

CSEC MATHEMATICS JUNE 2023 PAPER 3

1. (a) (i) Write down, in ASCENDING order, the two missing factors of 16.

1,, 4,, 16

SOLUTION:

Data: An incomplete set of the factors of 16, in ascending order **Required To Write:** The missing factors of 16 from the set **Solution:** 1, 2, 4, 8, 16

- 1, <u>2</u>, 4, 8, 16
- (ii) Write down the missing factors of 16, in ASCENDING order, as powers of 2.

 $2^0, \ldots, 2^2, \ldots, 2^4$

SOLUTION: Required To Write: The missing factors of 16, in ascending order, as powers of 2. Solution:

 $2^{0}, 2 = 2^{1}, 2^{2}, 8 = 2^{3}, 2^{4}$

- (b) Given that *r* is a prime number.
 - (i) state the four factors of r^3 as powers of r (One has been written for you.)

 $r^0, \ldots, \ldots, \ldots, \ldots$

SOLUTION:

Data: r is a prime number **Required To State:** The four factors of r^3 as powers of r**Solution:**

 $r^3 = r \times r \times r$ So the factors of r^3 are 1, r, r^2 and r^3 .

The four factors of r^3 are: $r^0, r^1 = r, r^2 = r \times r, r^3 = r \times r \times r$

(ii) state in terms of *n*, the number of factors of r^n .

SOLUTION:

Required To State: The number of factors of r^n , in terms of *n* **Solution:** *r* has 2 factors.

- r^2 has 3 factors.
- r^3 has 4 factors.
- r^n has (n+1) factors.
- (iii) a) Express 2 187 in the form 3^p .

SOLUTON: Required To Express: 2 187 in the form 3^p Solution: $2187 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$ $= 3^7$, where p = 7

b) Hence, determine the number of factors of 2 187. Do NOT write them out.

SOLUTION:

Required To Determine: The number of factors of 2 187 **Solution:** $2187 = 3^7$ will have 7+1=8 factors.

40 is not a prime number.

(c)

 $40 = 2^3 \times 5^1$ where 2 and 5 are prime numbers.

(i) Complete the table below by finding the factors of 40 that are missing.

Power of 5

	\mathbf{k}	50	5'
4	2°	$2^{\circ} \times 5^{\circ} = \dots$	$2^0 \times 5^1 = 5$
r of 2	2 ¹	$2^1 \times 5^0 = 2$	$2^1 \times 5^1 = 10$
Powel	2 ²	$2^2 \times 5^0 = 4$	$2^2 \times 5^1 = 20$
	2 ³	$2^3 \times 5^0 = 8$	$2^3 \times 5^1 = \dots$

SOLUTION:

Data: 40 is not a prime number and $40 = 2^3 \times 5^1$ where 2 and 5 are prime numbers. An incomplete table showing the factors of 40. **Required To Complete:** The table given **Solution:**

Power of 5

		5^{0}	51
Power of 2	2^{0}	$2^{\circ} \times 5^{\circ} = 1 \times 1 = 1$	$2^{\circ} \times 5^{\circ} = 5$
	2 ¹	$2^1 \times 5^0 = 2$	$2^{1} \times 5^{1} = 10$
	2 ²	$2^2 \times 5^0 = 4$	$2^2 \times 5^1 = 20$
	2 ³	$2^3 \times 5^0 = 8$	$2^3 \times 5^1 = 8 \times 5 = 40$

(ii) The table above has 4 rows and 2 columns.

Describe how to find the number of factors of 40 using the number of rows and the number of columns.

SOLUTION:

Data: The table given in part (i) above has 4 rows and 2 columns. **Required To Describe:** The method to find the number of factors of 40 using the number of rows and the number of columns in the table. **Solution:**

The factors of 40 are represented as a 4×2 matrix.

- $\begin{bmatrix}
 1 & 5 \\
 2 & 10 \\
 4 & 20
 \end{bmatrix}$
- 10

8 40)

Number of elements $= 4 \times 2$ = 8

a)

(iii)

Given that $5000 = 2^3 \times 5^4$, determine the number of factors of 5 000.

SOLUTION:

Data: $5000 = 2^3 \times 5^4$ **Required To Determine:** The number of factors of 5 000 **Solution:** $5000 = 2^3 \times 5^4$ will have $(3+1) \times (4+1) = 4 \times 5$

= 20 factors

b) Write 1 944 in the form $2^p \times 3^q$, where p and q are integers, given that 1 944 has 24 factors.

SOLUTION:

Data: 1 944 has 24 factors.

Required To Write: 1 944 in the form $2^p \times 3^q$, where *p* and *q* are integers.

Solution:

2	1944
2 2 3 3 3 3 3	972
2	4 8 6
3	2 4 3
3	8 1
3	2 7
3	9
3	3
	1

 $1944 = 2^3 \times 3^5$ is of the form $2^p \times 3^q$ where $p = 3 \in \mathbb{Z}$ and $q = 5 \in \mathbb{Z}$

The number of factors $(p+1) \times (q+1) = (3+1) \times (5+1)$ = 4×6

= 24 factors

Alternative Method

 $1944 = 2^p \times 3^q$

From (iii)(a), we know that:

(p+1)(q+1) = 24

This implies that solutions for p and q can be:

p	q	p + 1	q + 1
5	3	6	4
3	5	4	6
7	2	8	3
2	7	3	8
11	1	12	2
1	11	2	12

Try p = 5 and q = 3, $2^5 \times 3^3 = 864 \neq 1944$

Try p = 3 and q = 5, $2^3 \times 3^5 = 1944$

Hence, $1944 = 2^3 \times 3^5$

2. (a) The diagram below shows the positions of 3 small islands , L, M and K, located in a river. The bearing of M from L is 045°. The bearing of K from L is 126°. The bearing of K from M is 164°. The distance MK is 63 km.

(i) Determine the values of the angles *a* and *b*.

SOLUTION:

Data: Diagram showing the positions of 3 islands, K, L and M, on a river. The bearing of M from L is 045°. The bearing of K from L is 126°. The bearing of K from M is 164°. The distance MK is 63 km. **Required To Determine:** The values of angles a and b **Solution:**

$$N\hat{L}K = 126^{\circ}$$
$$N\hat{L}M = 45^{\circ}$$
$$\therefore M\hat{L}K = 126^{\circ} - 45^{\circ}$$
$$= 81^{\circ}$$
$$\therefore b = 81^{\circ}$$

(ii) Calculate the distance *LK*.

SOLUTION:

(b) The diagram below shows a scaled drawing for part of a building plan. In the diagram, *BC* is parallel to *DE* and *BA* is parallel to *DC*. *ACE* is a straight line.

AC = x cm, BC = 3.5 cm, DE = 6.5 cm and AE = 12 cm.

When figures are similar, the ratio of their corresponding sides are equal.

$$\therefore \frac{BC}{DE} = \frac{AC}{CE} = \frac{AB}{CD}$$
$$\frac{3.5}{6.5} = \frac{x}{12 - x}$$
$$3.5(12 - x) = 6.5 \times x$$
$$42.0 - 3.5x = 6.5x$$
$$42 = 6.5x + 3.5x$$
$$10x = 42$$
$$x = 4.2$$
$$\therefore AC = 4.2 \text{ cm}$$

(ii) If the area of triangle ABC is 7 cm², determine the TOTAL area of the portion of the building, ABCDE, shown above.

SOLUTION:

Data: Area of triangle *ABC* is 7 cm² **Required To Determine:** The total area of the *ABCDE* **Solution:**

: Area of
$$ABCDE = (7+24.143) \text{ cm}^2$$

= 31.14 cm² (correct to 2 decimal places)

10