CSEC MATHEMATICS JUNE 2023 PAPER 3

1. (a) (i) Write down, in ASCENDING order, the two missing factors of 16 .
1,
4, 16

SOLUTION:

Data: An incomplete set of the factors of 16 , in ascending order
Required To Write: The missing factors of 16 from the set
Solution:
$1,2,4,8,16$
(ii) Write down the missing factors of 16, in ASCENDING order, as powers of 2 .
2^{0}, \qquad 2^{2} \qquad 2^{4}

SOLUTION:
Required To Write: The missing factors of 16, in ascending order, as powers of 2 .

Solution:

$$
2^{0}, 2=2^{1}, 2^{2}, 8=2^{3}, 2^{4}
$$

(b) Given that r is a prime number.
(i) state the four factors of r^{3} as powers of r (One has been written for you.)
r^{0},

SOLUTION:

Data: r is a prime number
Required To State: The four factors of r^{3} as powers of r Solution:
$r^{3}=r \times r \times r$
So the factors of r^{3} are $1, r, r^{2}$ and r^{3}.

The four factors of r^{3} are:
$r^{0}, r^{1}=r, r^{2}=r \times r, r^{3}=r \times r \times r$
(ii) state in terms of n, the number of factors of r^{n}.

SOLUTION:

Required To State: The number of factors of r^{n}, in terms of n Solution:
r has 2 factors.
r^{2} has 3 factors.
r^{3} has 4 factors.
r^{n} has $(n+1)$ factors.
(iii) a) Express 2187 in the form 3^{p}.

SOLUTON:

Required To Express: 2187 in the form 3^{p}

Solution:

$$
\begin{aligned}
2187 & =3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \\
& =3^{7}, \text { where } p=7
\end{aligned}
$$

b) Hence, determine the number of factors of 2 187. Do NOT write them out.

SOLUTION:

Required To Determine: The number of factors of 2187

Solution:

$$
2187=3^{7} \text { will have } 7+1=8 \text { factors. }
$$

(c) $\quad 40$ is not a prime number.
$40=2^{3} \times 5^{1}$ where 2 and 5 are prime numbers.
(i) Complete the table below by finding the factors of 40 that are missing.

Power of 5

2^{0}	$2^{0} \times 5^{0}=\ldots \ldots \ldots$.	$2^{0} \times 5^{1}=5$
2^{1}	$2^{1} \times 5^{0}=2$	$2^{1} \times 5^{1}=10$
2^{2}	$2^{2} \times 5^{0}=4$	$2^{2} \times 5^{1}=20$
2^{3}	$2^{3} \times 5^{0}=8$	$2^{3} \times 5^{1}=\ldots \ldots \ldots$

SOLUTION:

Data: 40 is not a prime number and $40=2^{3} \times 5^{1}$ where 2 and 5 are prime numbers. An incomplete table showing the factors of 40 .
Required To Complete: The table given

Solution:

Power of 5

5^{0}

2^{0}	$2^{0} \times 5^{0}=1 \times 1=1$	$2^{0} \times 5^{1}=5$
$\underset{\sim}{\sim} \quad 21$	$2^{1} \times 5^{0}=2$	$2^{1} \times 5^{1}=10$
2^{2}	$2^{2} \times 5^{0}=4$	$2^{2} \times 5^{1}=20$
2^{3}	$2^{3} \times 5^{0}=8$	$2^{3} \times 5^{1}=8 \times 5=40$

(ii) The table above has 4 rows and 2 columns.

Describe how to find the number of factors of 40 using the number of rows and the number of columns.

SOLUTION:

Data: The table given in part (i) above has 4 rows and 2 columns.
Required To Describe: The method to find the number of factors of 40 using the number of rows and the number of columns in the table.

Solution:

The factors of 40 are represented as a 4×2 matrix.
$\left(\begin{array}{rr}1 & 5 \\ 2 & 10 \\ 4 & 20 \\ 8 & 40\end{array}\right)$

Number of elements $=4 \times 2$

$$
=8
$$

(iii) a) Given that $5000=2^{3} \times 5^{4}$, determine the number of factors of 5000.

SOLUTION:

Data: $5000=2^{3} \times 5^{4}$
Required To Determine: The number of factors of 5000 Solution:

$$
\begin{aligned}
& 5000=2^{3} \times 5^{4} \text { will have }(3+1) \times(4+1)=4 \times 5 \\
& =20 \text { factors }
\end{aligned}
$$

b) Write 1944 in the form $2^{p} \times 3^{q}$, where p and q are integers, given that 1944 has 24 factors.

SOLUTION:

Data: 1944 has 24 factors.
Required To Write: 1944 in the form $2^{p} \times 3^{q}$, where p and q are integers.

Solution:

2	1944	
2	97	2
2	48	6
3	24	
3	8	
3	2	
3		9
3		3

$1944=2^{3} \times 3^{5}$ is of the form $2^{p} \times 3^{q}$ where $p=3 \in \mathbb{Z}$ and $q=5 \in \mathbb{Z}$

The number of factors $(p+1) \times(q+1)=(3+1) \times(5+1)$

$$
\begin{aligned}
& =4 \times 6 \\
& =24 \text { factors }
\end{aligned}
$$

Alternative Method

$$
1944=2^{p} \times 3^{q}
$$

From (iii)(a), we know that:

$$
(p+1)(q+1)=24
$$

This implies that solutions for p and q can be:

p	q	$p+1$	$q+1$
5	3	6	4
3	5	4	6
7	2	8	3
2	7	3	8
11	1	12	2
1	11	2	12

Try $p=5$ and $q=3,2^{5} \times 3^{3}=864 \neq 1944$
Try $p=3$ and $q=5,2^{3} \times 3^{5}=1944$
Hence, $1944=2^{3} \times 3^{5}$
2. (a) The diagram below shows the positions of 3 small islands , L, M and K, located in a river. The bearing of M from L is 045°. The bearing of K from L is 126°. The bearing of K from M is 164°. The distance $M K$ is 63 km .

(i) Determine the values of the angles a and b.

SOLUTION:

Data: Diagram showing the positions of 3 islands, K, L and M, on a river. The bearing of M from L is 045°. The bearing of K from L is 126°. The bearing of K from M is 164°. The distance $M K$ is 63 km . Required To Determine: The values of angles a and b

Solution:

$$
\begin{aligned}
N \hat{M} L & =180^{\circ}-45^{\circ} \\
& =135^{\circ}
\end{aligned}
$$

(Co-interior angles are supplementary.)

$$
\begin{aligned}
& 135^{\circ}+a+164^{\circ}=360^{\circ} \\
& a=61^{\circ} \\
& \left(\text { Angles in a complete turn }=360^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
N \hat{L} K & =126^{\circ} \\
N \hat{L} M & =45^{\circ} \\
\therefore M \hat{L} K & =126^{\circ}-45^{\circ} \\
& =81^{\circ} \\
\therefore b & =81^{\circ}
\end{aligned}
$$

(ii) Calculate the distance $L K$.

SOLUTION:

Required To Calculate: The distance $L K$ Calculation:

Using the sine rule:

$$
\begin{aligned}
\frac{L K}{\sin 61^{\circ}} & =\frac{63}{\sin 81^{\circ}} \\
L K & =\frac{63 \times \sin 61^{\circ}}{\sin 81^{\circ}} \\
& =55.787 \\
& \approx 55.79 \mathrm{~km} \text { (correct to } 2 \text { decimal places) }
\end{aligned}
$$

(b) The diagram below shows a scaled drawing for part of a building plan. In the diagram, $B C$ is parallel to $D E$ and $B A$ is parallel to $D C . A C E$ is a straight line.
$A C=x \mathrm{~cm}, B C=3.5 \mathrm{~cm}, D E=6.5 \mathrm{~cm}$ and $A E=12 \mathrm{~cm}$.

(i) Calculate the length $A C$.

SOLUTION:

Data: Diagram showing a scaled drawing for part of a building plan. In the diagram, $B C$ is parallel to $D E$ and $B A$ is parallel to $D C . A C E$ is a straight line. $A C=x \mathrm{~cm}, B C=3.5 \mathrm{~cm}, D E=6.5 \mathrm{~cm}$ and $A E=12 \mathrm{~cm}$ Required To Calculate: The length $A C$ Calculation:

$$
\begin{aligned}
A \hat{C} B & =C \hat{E} D \quad \text { (Corresponding angles) } \\
& =\alpha^{\circ}
\end{aligned}
$$

$A \hat{B} C=B \hat{C} D$ (Alternate angles)
$B \hat{C} D=C \hat{D} E$ (Alternate angles)

$$
\begin{aligned}
\hat{B A C} & =D \hat{C} E \\
& =180^{\circ}-(\alpha+\beta)^{\circ}
\end{aligned}
$$

$\triangle A B C$ is similar to $\triangle C D E$.

$$
A E=12 \mathrm{~cm}
$$

$$
\therefore C E=(12-x) \mathrm{cm}
$$

When figures are similar, the ratio of their corresponding sides are equal.

$$
\begin{aligned}
\therefore \frac{B C}{D E} & =\frac{A C}{C E}=\frac{A B}{C D} \\
\frac{3.5}{6.5} & =\frac{x}{12-x} \\
3.5(12-x) & =6.5 \times x \\
42.0-3.5 x & =6.5 x \\
42 & =6.5 x+3.5 x \\
10 x & =42 \\
x & =4.2 \\
\therefore A C & =4.2 \mathrm{~cm}
\end{aligned}
$$

(ii) If the area of triangle $A B C$ is $7 \mathrm{~cm}^{2}$, determine the TOTAL area of the portion of the building, $A B C D E$, shown above.

SOLUTION:

Data: Area of triangle $A B C$ is $7 \mathrm{~cm}^{2}$
Required To Determine: The total area of the $A B C D E$ Solution:

$$
\begin{aligned}
\frac{D E}{B C} & =\frac{6.5}{3.5} \\
\therefore \text { Area of } \triangle C D E & =\left(\frac{6.5}{3.5}\right)^{2} \times 7 \mathrm{~cm}^{2} \\
& =24.143 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Area of $A B C D E=(7+24.143) \mathrm{cm}^{2}$

$$
\left.=31.14 \mathrm{~cm}^{2} \text { (correct to } 2 \text { decimal places }\right)
$$

