CSEC MATHEMATICS JANUARY 2023 PAPER 3

1. The diagram below shows the front view of Pinky's house, which includes four windows and a door.

(a) (i) Calculate the TOTAL surface area of the front view of Pinky's house, inclusive of the windows and doors.

SOLUTION:
Data: Diagram showing a front view of Pinky's house, which includes four windows a door.
Required to calculate: The total surface area of Pinky's house, inclusive of the windows and doors.
Calculation:
We divide the compound shape into two regions, A and B, as shown in the diagram below.

Area of triangle, $A=\frac{3.4 \times 18}{2} \mathrm{~m}^{2}$

$$
=30.6 \mathrm{~m}^{2}
$$

Area of rectangle, $B=(18 \times 7.5) \mathrm{m}^{2}$

$$
=135 \mathrm{~m}^{2}
$$

\therefore Area of the front view of Pinky's house $=$ Area of $A+$ Area of B

$$
\begin{aligned}
& =(30.6+135) \mathrm{m}^{2} \\
& =165.6 \mathrm{~m}^{2}
\end{aligned}
$$

(ii) The windows and the door are made of shatterproof glass. The door is 1.2 m wide and 2.8 m high. Each of the four windows is 1.8 m wide and 1.4 m high.

Determine the MINIMUM amount of glass needed for the door and the four windows.

SOLUTION:

Data: The door has dimensions 2.8 m by 1.2 m . Each of the four windows has dimensions 1.8 m by 1.4 m . Both the door and the windows are made with shatterproof glass.
Required to determine: The minimum amount of glass needed to make the door and the four windows.

Solution:

Area of the door $=(1.2 \times 2.8) \mathrm{m}^{2}$

$$
=3.36 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
\text { Area of all four windows } & =4(1.8 \times 1.4) \mathrm{m}^{2} \\
& =10.08 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, the minimum amount of glass needed is $=(3.36+10.08) \mathrm{m}^{2}$

$$
=13.44 \mathrm{~m}^{2}
$$

(iii) Pinky covers the front of her house, excluding the door and the four windows, with decorative wall tiles.

Calculate the area she covers with tiles.
SOLUTION: The front of the house, excluding the door and four windows, will be covered with tiles.
Required to calculate: The area to be covered with tiles.
Calculation:
The area to be covered with tiles
$=$ Total front area - Area occupied by doors and windows
$=(165.6-13.44) \mathrm{m}^{2}$
$=152.16 \mathrm{~m}^{2}$
(b) Pinky paints one of the walls of the house which has an area of $53 \mathrm{~m}^{2}$. One litre of paint covers an area of $4.5 \mathrm{~m}^{2}$. Paint is sold in 2.5 litre tins, each costing $\$ 24.75$.
Pinky buys the LEAST number of tins of paint needed to paint this wall.
Calculate the cost of the paint required to paint the wall.

SOLUTION:

Data: Pinky decides to paint a wall of area $53 \mathrm{~m}^{2}$. One litre of paint covers $4.5 \mathrm{~m}^{2}$ of wall and paint is sold in 2.5 litre tins at a cost of $\$ 24.75$ each.
Required to calculate: The cost of the least number of tins of paint needed to paint this wall.
Calculation:
Area of wall $=53 \mathrm{~m}^{2}$

One tin of paint covers $(2.5 \times 4.5) \mathrm{m}^{2}$

$$
\begin{aligned}
\text { Number of tins required } & =\frac{53}{2.5 \times 4.5} \\
& =\frac{53}{11.25} \\
& =4.7
\end{aligned}
$$

Since the paint is sold in 2.5 litre tins, the least number of tins that need to be bought $=5$ tins (the nearest integer value that is greater than 4.7).
\therefore The cost of the paint will be $\$ 24.75 \times 5=\$ 123.75$
2. (a) Lela cycles along a path for 5 minutes. She starts from rest, and accelerates at a constant rate until she reaches a speed of $5 \mathrm{~m} / \mathrm{s}$ after 100 seconds. She continues cycling at $5 \mathrm{~m} / \mathrm{s}$ for 2 minutes and 40 seconds. She then decelerates at a constant rate until she stops.
(i) On the grid below, draw a speed-time graph to show Lela's journey.

SOLUTION:

Data: Lela cycles along a path for 5 minutes. She starts from rest, and accelerates at a constant rate until she reaches a speed of $5 \mathrm{~m} / \mathrm{s}$ after 100 seconds. She continues cycling at $5 \mathrm{~m} / \mathrm{s}$ for 2 minutes and 40 seconds. She then decelerates at a constant rate until she stops.
Required to draw: A speed-time graph to show Lela's journey. Solution:
At rest, the speed is $0 \mathrm{~ms}^{-1}$.
In the first 100 seconds, the acceleration is constant, hence this branch is a straight line.
A constant speed of $5 \mathrm{~ms}^{-1}$ for 160 s is shown by a horizontal branch (gradient $=0 \Rightarrow$ acceleration $=0 \mathrm{~ms}^{-2}$)
The deceleration takes place over $300-260=40$ seconds and since it is constant, this branch is a straight line with a negative gradient.

(ii) Determine Lela's acceleration.

SOLUTION:

Required to determine: Lela's acceleration.

Solution:

Acceleration $=$ Gradient of the branch $O A$

$$
\begin{aligned}
& =\frac{5-0}{100-0} \mathrm{~ms}^{-2} \\
& =\frac{1}{20} \mathrm{~ms}^{-2}
\end{aligned}
$$

(iii) Calculate Lela's average speed for the entire journey.

SOLUTION:

Required to calculate: Lela's average speed for the entire journey.

Calculation:

Total distance covered $=$ Area under the graph $=$ Area of $O A B C$

$$
\begin{aligned}
& =\frac{1}{2}(160+300) \times 5 \\
& =1150 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Average speed } & =\frac{\text { Total distance covered }}{\text { Total time taken }} \\
& =\frac{1150}{300} \mathrm{~ms}^{-1} \\
& =3 \frac{5}{6} \mathrm{~ms}^{-1}
\end{aligned}
$$

(b) The diagram below shows the graph of 3 lines, L_{1}, L_{2} and L_{3} and the shaded region, R, which represents the common region for the 3 inequalities associated with the lines L_{1}, L_{2} and L_{3}, that define R.

The table below shows some of the equations of the lines L_{1}, L_{2} and L_{3} and the respective inequalities that define the shaded region R.

Line	Equation of Line (in the form $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$)	Inequality associated with Line
	$y=2 x$	
		$2 y<10-x$

Complete the table above by inserting the missing information.

SOLUTION:

Data: Diagram of the graphs of three lines, L_{1}, L_{2} and L_{3} and a shaded region R that satisfies three inequalities associated with the lines, L_{1}, L_{2} and L_{3}. An incomplete table showing some of the equations of L_{1}, L_{2} and L_{3} and the respective inequalities associated with them.

Required to complete: The table given

Solution:

Consider L_{1}
Choose two points $(0,0)$ and $(2,4)$ on L_{1}
Gradient $=\frac{4-0}{2-0}=2$
L_{1} cuts the y-axis at 0 . Hence the equation of L_{1} is $y=2 x$.

The shaded region represents the inequality $y \leq 2 x$ (assuming that the shaded region includes the line)
Consider L_{2} :
L_{2} is a horizontal that cuts the y-axis at 2 .
The equation is $y=2$.
The shaded region is above the line $y=2$ and represents inequality $y \geq 2$ (assuming that the shaded region includes the line)

Consider L_{3} :

The inequality associated with the line is given as $2 y<10-x$. Hence, the equation of the line is $2 y=10-x$.

The completed table looks like:

Line	Equation of Line (in the form $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$)	Inequality associated with Line
L_{1}	$y=2 x$	$y \leq 2 x$
L_{2}	$y=2$	$y \geq 2$
L_{3}	$2 y=10-x$	$2 y<10-x$

