

CSEC MATHEMATICS JANUARY 2023 PAPER 3

1. The diagram below shows the front view of Pinky's house, which includes four windows and a door.

(a)

(i)

Calculate the TOTAL surface area of the front view of Pinky's house, inclusive of the windows and doors.

SOLUTION:

Data: Diagram showing a front view of Pinky's house, which includes four windows a door.

Required to calculate: The total surface area of Pinky's house, inclusive of the windows and doors.

Calculation:

We divide the compound shape into two regions, A and B, as shown in the diagram below.

Area of triangle, $A = \frac{3.4 \times 18}{2} \text{ m}^2$ = 30.6 m²

Area of rectangle, $B = (18 \times 7.5) \text{ m}^2$ = 135 m²

: Area of the front view of Pinky's house = Area of A + Area of B= (30.6+135) m² = 165.6 m²

(ii) The windows and the door are made of shatterproof glass. The door is 1.2 m wide and 2.8 m high. Each of the four windows is 1.8 m wide and 1.4 m high.

Determine the MINIMUM amount of glass needed for the door and the four windows.

SOLUTION:

Data: The door has dimensions 2.8 m by 1.2 m. Each of the four windows has dimensions 1.8 m by 1.4 m. Both the door and the windows are made with shatterproof glass.

Required to determine: The minimum amount of glass needed to make the door and the four windows.

Solution:

Area of the door $=(1.2 \times 2.8) \text{ m}^2$ = 3.36 m²

Area of all four windows $= 4(1.8 \times 1.4) \text{ m}^2$

 $=10.08 \text{ m}^2$

Hence, the minimum amount of glass needed is $= (3.36 + 10.08) \text{ m}^2$

 $=13.44 \text{ m}^2$

(iii) Pinky covers the front of her house, excluding the door and the four windows, with decorative wall tiles.

Calculate the area she covers with tiles.

SOLUTION: The front of the house, excluding the door and four windows, will be covered with tiles. **Required to calculate:** The area to be covered with tiles. **Calculation:** The area to be covered with tiles = Total front area – Area occupied by doors and windows =(165.6-13.44) m² = 152.16 m²

(b) Pinky paints one of the walls of the house which has an area of 53 m². One litre of paint covers an area of 4.5 m². Paint is sold in 2.5 litre tins, each costing \$24.75. Pinky buys the LEAST number of tins of paint needed to paint this wall.

Calculate the cost of the paint required to paint the wall.

SOLUTION:

Data: Pinky decides to paint a wall of area 53 m². One litre of paint covers 4.5 m^2 of wall and paint is sold in 2.5 litre tins at a cost of \$24.75 each.

Required to calculate: The cost of the least number of tins of paint needed to paint this wall.

Calculation:

Area of wall $= 53 \text{ m}^2$

One tin of paint covers (2.5×4.5) m²

Number of tins required $= \frac{53}{2.5 \times 4.5}$ $= \frac{53}{11.25}$ = 4.7

Since the paint is sold in 2.5 litre tins, the least number of tins that need to be bought = 5 tins (the nearest integer value that is greater than 4.7).

: The cost of the paint will be $24.75 \times 5 = 123.75$

- 2. (a) Lela cycles along a path for 5 minutes. She starts from rest, and accelerates at a constant rate until she reaches a speed of 5 m/s after 100 seconds. She continues cycling at 5 m/s for 2 minutes and 40 seconds. She then decelerates at a constant rate until she stops.
 - (i) On the grid below, draw a speed-time graph to show Lela's journey.

SOLUTION:

Data: Lela cycles along a path for 5 minutes. She starts from rest, and accelerates at a constant rate until she reaches a speed of 5 m/s after 100 seconds. She continues cycling at 5 m/s for 2 minutes and 40 seconds. She then decelerates at a constant rate until she stops.

Required to draw: A speed-time graph to show Lela's journey. **Solution:**

At rest, the speed is 0 ms^{-1} .

In the first 100 seconds, the acceleration is constant, hence this branch is a straight line.

A constant speed of 5 ms⁻¹ for 160 s is shown by a horizontal branch

 $(\text{gradient} = 0 \implies \text{acceleration} = 0 \text{ ms}^{-2})$

The deceleration takes place over 300-260 = 40 seconds and since it is constant, this branch is a straight line with a negative gradient.

SOLUTION: **Required to calculate:** Lela's average speed for the entire journey.

Calculation:

Total distance covered = Area under the graph = Area of OABC

$$=\frac{1}{2}(160+300)\times 5$$

=1150 m

Average speed =
$$\frac{\text{Total distance covered}}{\text{Total time taken}}$$

= $\frac{1150}{300} \text{ ms}^{-1}$
= $3\frac{5}{6} \text{ ms}^{-1}$

(b) The diagram below shows the graph of 3 lines, L_1 , L_2 and L_3 and the shaded region, R, which represents the common region for the 3 inequalities associated with the lines L_1 , L_2 and L_3 , that define R.

The table below shows some of the equations of the lines L_1 , L_2 and L_3 and the respective inequalities that define the shaded region *R*.

Line	Equation of Line	Inequality associated with Line
	(in the form $y = mx + c$)	
	y = 2x	
		2y < 10 - x

Complete the table above by inserting the missing information.

SOLUTION:

Data: Diagram of the graphs of three lines, L_1 , L_2 and L_3 and a shaded region R that satisfies three inequalities associated with the lines , L_1 , L_2 and L_3 . An incomplete table showing some of the equations of L_1 , L_2 and L_3 and the respective inequalities associated with them.

Required to complete: The table given

Solution:

Consider L_1

Choose two points (0, 0) and (2, 4) on L_1

Gradient =
$$\frac{4-0}{2-0}$$
 =

 L_1 cuts the y-axis at 0. Hence the equation of L_1 is y = 2x.

The shaded region represents the inequality $y \le 2x$ (assuming that the shaded region includes the line)

Consider L_2 :

 L_{2} is a horizontal that cuts the y – axis at 2.

The equation is y = 2.

The shaded region is above the line y = 2 and represents inequality $y \ge 2$ (assuming that the shaded region includes the line)

Consider L_3 :

The inequality associated with the line is given as 2y < 10 - x. Hence, the equation of the line is 2y = 10 - x.

The completed table looks like:

Line	Equation of Line (in the form $y = mx + c$)	Inequality associated with Line
L_1	y = 2x	$y \leq 2x$
L_2	<i>y</i> = 2	$y \ge 2$
L_3	2y = 10 - x	2y < 10 - x