CSEC MATHEMATICS PAPER 3 MAY/JUNE 2022

1. (Use $\pi=\frac{22}{7}$ where required.)

The diagram below shows a solid bar of gold in the shape of a hexagonal prism of length 17.2 cm . The vertical cross-section of this prism is a regular hexagon with side of length 8 cm .

(a) (i) The formula for the area of any regular polygon is given by

$$
\text { Area }=\frac{s^{2} n}{4 \tan \left(\frac{180}{n}\right)}
$$

where s is the length of any side
n is the number of sides of the regular polygon, and tan is the tangent function calculated in degrees.

Using the formula above, calculate the area of the vertical cross-section of the hexagonal bar of gold.

SOLUTION:

Data: Diagram showing a solid bar of gold in the shape of a hexagonal prism of length 17.2 cm with a regular hexagonal cross-section with each side of length 8 cm . The area of any regular polygon is given by
Area $=\frac{s^{2} n}{4 \tan \left(\frac{180}{n}\right)}$
Required To Calculate: The area of the vertical cross-section of the hexagonal bar of gold

Calculation:

$$
\text { Area }=\frac{s^{2} n}{4 \tan \left(\frac{180}{n}\right)}
$$

In the hexagon, $s=8, n=6$
\therefore Area of the vertical hexagonal cross-section

$$
\begin{aligned}
& =\frac{(8)^{2}(6)}{4 \tan \left(\frac{180^{\circ}}{6}\right)} \\
& =\frac{64 \times 6}{4 \tan 30^{\circ}} \\
& =\frac{96}{\frac{1}{\sqrt{3}}} \\
& =96 \sqrt{3} \mathrm{~cm}^{2} \text { (in exact form) } \\
& \approx 166.28 \mathrm{~cm}^{2} \text { (correct to } 2 \text { decimal places) }
\end{aligned}
$$

(ii) Determine the volume of the bar of gold.

SOLUTION:

Required To Determine: The volume of the bar of gold Solution:
Volume of the bar of gold $=$ Cross-sectional area \times length

$$
\begin{aligned}
& =166.28 \times 17.2 \mathrm{~cm}^{3} \\
& =2860 \mathrm{~cm}^{3}
\end{aligned}
$$

(iii) Given that the density of gold is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$, calculate the mass of the bar of gold, to the nearest kilogram.

$$
\left(\text { Density }=\frac{\text { mass }}{\text { volume }}\right)
$$

SOLUTION:

Data: The density of gold is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$ and density $=\frac{\text { mass }}{\text { volume }}$
Required To Calculate: The mass of the bar of gold, correct to the nearest kilogram
Calculation:
Mass $=$ Density \times Volume

$$
=2860 \times 19.3 \mathrm{~g}
$$

$$
\begin{aligned}
& =\frac{2860 \times 19.3}{1000} \mathrm{~kg} \quad(\operatorname{Re}: 1000 \mathrm{~g}=1 \mathrm{~kg}) \\
& =55.198 \mathrm{~kg} \\
& \approx 55 \mathrm{~kg}(\text { correct to nearest kilogram })
\end{aligned}
$$

(iv) Calculate the TOTAL surface area of the bar of gold.

SOLUTION:

Required To Calculate: The total surface area of the bar of gold Calculation:
Area of the bar
$=$ Area of hexagonal face $\times 2+$ Area of one rectangular face $\times 6$
$=2(166.28)+6(17.2 \times 8)$
$=332.56+825.6$
$=1158.16 \mathrm{~cm}^{2}$
(b) A jeweller melted $393 \mathrm{~cm}^{3}$ of gold to make 6 identical spheres. Calculate the radius of EACH sphere.
(The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.)

SOLUTION:

Data: 6 identical metal spheres are made with $393 \mathrm{~cm}^{3}$ of melted gold. The volume of a sphere is $V=\frac{4}{3} \pi r^{3}$, where r is the radius of the sphere.
Required To Calculate: The radius of each sphere.
Calculation:
Volume of each sphere $=\frac{393}{6} \mathrm{~cm}^{3}$

$$
=65.5 \mathrm{~cm}^{3}
$$

$$
\begin{aligned}
\therefore \frac{4}{3} \pi r^{3} & =65.5 \\
r^{3} & =\frac{65.5 \times 3}{4 \pi} \\
& =\frac{196.5}{12.568} \\
& =15.635 \\
r & =\sqrt[3]{15.635} \\
& =2.501
\end{aligned}
$$

Hence, the radius of each sphere $\approx 2.50 \mathrm{~cm}$ (correct to 2 decimal places)
2. (a) The distance a bus travels on a journey from City A to City B is 800 km .
(i) Write an expression, in terms of x, for the average speed of the bus, in km / h, when the journey takes
a) $\quad x$ hours

SOLUTION:
Data: A bus travels 800 km from City A to City B
Required To Write: An expression, in terms of x, for the average speed of the bus when the journey takes x hours.
Solution:
Distance $=800 \mathrm{~km}$
Time $=x \mathrm{~h}$

$$
\begin{aligned}
\text { Average speed } & =\frac{\text { Total distance covered }}{\text { Total time taken }} \\
& =\frac{800}{x} \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

b) $\quad(x+2)^{\text {hours }}$

SOLUTION:

Required To Write: An expression, in terms of x, for the average speed of the bus when the journey takes $(x+2)$ hours.

Solution:

$$
\begin{aligned}
\text { Average speed } & =\frac{\text { Total distance covered }}{\text { Total time taken }} \\
& =\frac{800}{x+2} \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

(ii) The difference between the average speeds in (a) (i) is $20 \mathrm{~km} / \mathrm{h}$.

Show that $x^{2}+2 x-80=0$.

SOLUTION:

Data: The difference between the average speeds in (a) (i) is $20 \mathrm{~km} / \mathrm{h}$.
Required To Show: $x^{2}+2 x-80=0$
Proof:
Difference between the speeds $=20 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& \frac{800}{x}-\frac{800}{x+2}=20 \\
& \frac{800(x+2)-800(x)}{x(x+2)}=20 \\
& \frac{800 x+1600-800 x}{x(x+2)}=20 \\
& \frac{1600}{x(x+2)}=20 \\
& 1600=20 x(x+2) \\
& 20 x^{2}+40 x-1600=0 \\
&(\div 20) \quad \text { Q.E.D. }
\end{aligned}
$$

(iii) Solve the quadratic equation $x^{2}+2 x-80=0$ and hence, determine the average speed of the bus if the journey takes $(x+12)$ hours.

SOLUTION:

Data: The journey takes $(x+12)$ hours.
Required To Determine: The average speed of the bus by solving $x^{2}+2 x-80=0$

Solution:

$$
\begin{aligned}
x^{2}+2 x-80 & =0 \\
(x+10)(x-8) & =0 \\
x & =-10 \text { or } 8 \\
x & \neq-v e \\
\therefore x & =8 \text { only }
\end{aligned}
$$

When $x=8$:
Average speed of the bus $=\frac{800 \mathrm{~km}}{(8+12) \mathrm{h}}$

$$
=40 \mathrm{~km} / \mathrm{h}
$$

(b) The total surface area of a cone with radius k and slant height $3 k$ is equal to the area of a circle with radius p.

Show that $p=2 k$.
[The total surface area, A, of a cone with radius r and slant height l is $\left.A=\pi r^{2}+\pi r l.\right]$

SOLUTION:

Data: The total surface area of a cone with radius k and slant height $3 k$ is equal to the area of a circle with radius p. The total surface area, A, of a cone with radius r and slant height l is $A=\pi r^{2}+\pi r l$.
Required To Show: $p=2 k$

Proof:

Area of cone $=$ Area of curved surface + Area of base

$$
\begin{aligned}
& =\pi(k)^{2}+\pi(k)(3 k) \\
& =\pi k^{2}+3 \pi k^{2} \\
& =4 \pi k^{2}
\end{aligned}
$$

Area of the circle $=\pi p^{2}$
Hence, $\quad 4 \pi k^{2}=\pi p^{2}$
$(\div \pi) \quad 4 k^{2}=p^{2}$

$$
4 k^{2}=p^{2}
$$

$$
p=\sqrt{4 k^{2}}
$$

$$
= \pm 2 k
$$

Taking the positive value since p is the radius of the circle.
$p=2 k$
Q.E.D.

