CSEC MATHEMATICS JANUARY 2020 PAPER 3

1. (a) A hardware store has a sale on hammers, drills and spanners. A hammer is sold for $\$ 15$, a drill for $\$ 75$ and a spanner for $\$ 25$. Customer \mathbf{A} bought 9 hammers, 14 drills and 2 spanners, and Customer B bought 8 hammers, 6 drills and 7 spanners.
(i) Construct the following matrices.
a) Matrix P, of order 3×1, to show the prices of the items on sale

SOLUTION:

Data: Customer A bought 9 hammers, 14 drills and 2 spanners.
Customer B bought 8 hammers, 6 drills and 7 spanners. The cost of a hammer is $\$ 15$, the cost of a drill is $\$ 75$ and the cost of a spanner is $\$ 25$.
Required to construct: The 3×1 matrix P to show the prices of the items on sale.

Solution:

$$
P=\left(\begin{array}{c}
15 \\
75 \\
25
\end{array}\right)
$$

b) Matrix N, of order 2×3, to show the number of items bought by the two customers.

SOLUTION:

Required to construct: The 2×3 matrix N, to show the number of items bought by the two customers.

Solution:

$$
N=\left(\begin{array}{rrr}
9 & 14 & 2 \\
8 & 6 & 7
\end{array}\right)
$$

(ii) Calculate, using a matrix method, the TOTAL amount spent by EACH of the customers.

SOLUTION:
Required to calculate: The total amount spent by each of the customers. Calculation:

$$
\left.\begin{array}{rl}
N \times P & =\left(\begin{array}{lrr}
9 & 14 & 2 \\
8 & 6 & 7
\end{array}\right)\left(\begin{array}{l}
15 \\
75 \\
25
\end{array}\right) \\
& =\binom{e_{11}}{e_{21}} \\
2 \times 1
\end{array}\right) \begin{aligned}
e_{11} & =(9 \times 15)+(14 \times 75)+(2 \times 25) \\
& =\$ 1235 \\
e_{21} & =(8 \times 15)+(6 \times 75)+(7 \times 25) \\
& =\$ 745 \\
N \times P & =\binom{1235}{745}
\end{aligned}
$$

Hence, Customer A spent $\$ 1235$ and Customer B spent $\$ 745$.
(b) Teacher Mabel is providing a meal for all the junior students in her school. Each student will have either a hamburger or a pizza. The cost of a hamburger is $\$ 4$ while the cost of a pizza is $\$ 5$. Let x represent the number of hamburgers and y the number of pizzas that she buys.
(i) Fill in the missing equations/inequalities in the table below to represent the condition given in Column 2.

	Condition	Equation/Inequality
a)	Each of 220 students must get one meal.	
b)	Teacher Mabel has no more than $\$ 900$ to cater for meals for all of the students.	
c)	She must buy more hamburgers than pizzas.	

SOLUTION:

Data: Teacher Mabel is providing a meal of either hamburger at $\$ 4$ each or pizza at $\$ 5$ each for all the junior students at her school. The number of hamburgers that she buys is denoted by x and the number of pizzas that she buys is denoted by y.
Required to complete: The table given, showing some conditions and the equation or inequality associated with each condition.

Solution:

a) Number of hamburgers $=x$

Number of pizzas $=y$
Each of the 220 students gets one meal.
Hence, $x+y=220$
b) Cost of x hamburgers at $\$ 4$ each and y pizzas at $\$ 5$ each

$$
\begin{aligned}
& =\$(4 \times x)+\$(5 \times y) \\
& =\$(4 x+5 y)
\end{aligned}
$$

Hence, $4 x+5 y \leq 900$
c) More burgers than pizzas.

Hence, $x>y$.
The completed table looks like:

	Condition	Equation/Inequality
a)	Each of 220 students must get one meal.	$x+y=220$
b)	Teacher Mabel has no more than $\$ 900$ to cater for meals for all of the students.	$4 x+5 y \leq 900$
c)	She must buy more hamburgers than pizzas.	$x>y$

(ii) The line corresponding to the inequality $x>y$ is shown on the graph below. On the graph, draw the lines corresponding to the other two equations/inequalities in the table in part (i) above.

SOLUTION:

Data: Graph showing the line corresponding to the inequality $x>y$.
Required to draw: The lines corresponding to the other two equations/inequalities.

Solution:

Consider the line $x+y=220$

\boldsymbol{x}	\boldsymbol{y}
0	220
220	0

Consider the line $4 x+5 y=900$

\boldsymbol{x}	\boldsymbol{y}
0	180
225	0

(iii) Using your graph, or otherwise, determine the MAXIMUM number of hamburgers and pizzas that Teacher Mabel can buy.

SOLUTION:

Required to determine: The maximum number of hamburgers and pizzas that Teacher Mabel can buy.

Solution:

Finding the feasible region
For $x>y$:

FAS-PASS
Maths

For $4 x+5 y \leq 900$:

The feasible region is

The vertices of the feasible region (the region accepted by all the inequalities) are $A(20,20), B(100,100)$ and $C(200,20)$.

Clearly, the maximum number of hamburgers and pizzas will be 100 of each.
2. John makes a wooden barn to store grains for his farm animals. The barn is in the shape of a prism with a pentagonal cross-section and has dimensions as shown in the diagram below.

(a) Show that the TOTAL outer surface area of the barn (excluding the floor) is 2034 m^{2}.

SOLUTION:

Data: Diagram showing the dimensions of a wooden barn in the shape of a prism with a pentagonal cross-section.
Required to show: The total outer surface area of the barn, excluding the floor, is 2034 m2.
Proof:
Area of the both sides of the rectangular roof $=2(25 \times 12)$

$$
=600 \mathrm{~m}^{2}
$$

Area of left and right rectangular walls $=2(25 \times 15)$

$$
=750 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
\text { Area of front and back walls } & =2(18 \times 15)+2\left(\frac{18 \times 8}{2}\right) \\
& =540+144 \mathrm{~m}^{2} \\
& =684 \mathrm{~m}^{2}
\end{aligned}
$$

Total outer surface area $=600+750+684$

$$
=2034 \mathrm{~m}^{2} \quad \text { Q.E.D. }
$$

(b) (i) Given that 1 gallon of paint covers approximately 28 square metres of surface, determine the TOTAL amount of paint, in litres, that is needed to paint the outer surface area of the barn. (1 gallon ≈ 3.79 litres)

SOLUTION:

Data: 1 gallon of paint covers approximately 28 square metres of surface
Required to determine: The total amount of paint, in litres, is needed to paint the outer surface area of the barn.
Solution:
Area to be painted (assuming there are no windows)
Amount of paint required

$$
\begin{aligned}
& =\frac{\text { Surface area of the barn }}{28} \text { gallons } \\
& =\frac{2038}{28} \\
& =72.643 \text { gallons } \\
& =72.643 \times 3.79 \mathrm{~L} \\
& =275.31 \mathrm{~L}
\end{aligned}
$$

(ii) If the paint is sold in one-gallon containers only, how many containers of paint are needed to complete the job?

SOLUTION:

Data: Paint is sold in one-gallon containers
Required To Find: The number of containers of paint needed to complete the job

Solution:

The number of gallons required is 72.643 .
Since the paint is sold in one-gallon containers, 72 gallons will be insufficient one would have to buy 73 gallons to complete the job.
(c) Determine the capacity (volume) of the barn.

SOLUTION:

Required To Determine: The capacity (volume) of the barn Solution:

Volume of the rectangular base of the barn $=25 \times 18 \times 15 \mathrm{~m}^{3}$ $=6750 \mathrm{~m}^{3}$

Volume of the roof region $=$ Cross - sectional area \times Length

$$
\begin{aligned}
& =\left(\frac{18 \times 8}{2}\right) \times 25 \\
& =1800 \mathrm{~m}^{3}
\end{aligned}
$$

\therefore Total volume of the barn $=6750+1800$

$$
=8550 \mathrm{~m}^{3}
$$

Alternatively, we could have found the area of cross section of the barn and multiply this area by 25 m (length)

Area of cross-section

$$
\begin{aligned}
& =(18 \times 15)+\left(\frac{1}{2} \times 18 \times 8\right) \\
& =270+72 \\
& =342 \mathrm{~m}^{2}
\end{aligned}
$$

Volume of the barn
$=$ Area of cross-section \times length
$=342 \times 25 \mathrm{~m}^{3}$
$=8550 \mathrm{~m}^{3}$

