YEAR 2018
SECTION I

No.	TEST ITEMS	WORKING COLUMN					Do Not Write Here		
							KC	AT	PS
1.	State the value of the underlined digit in the number below. $\underline{\mathbf{2}} 3416$ Answer: 20000	 2 of tens	Thousands 3 f thousan	Hundreds 4 $\begin{aligned} \mathrm{ds} & =2 \times 1 \\ & =20 \end{aligned}$	Tens 1 000 00	Units 6			
2.	What percentage of the shape below is shaded? Answer: 50\%	There are 10 strips in all. 5 of the 10 strips are shaded. Assuming that the size of the strips (shaded and unshaded) are equal, the percentage of the shape that is shaded is $\frac{5}{10} \times 100=50 \%$							
3.	What number must be placed in the circle to given the result shown? Answer: $=12$	Using the reverse process and starting from the result of 54, we get:							

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
4.	Write the numeral that represents nine hundred and five thousand, four hundred and twelve. Answer: 905412	$\underbrace{\text { Nine hundred and five thousand }}_{90500}$, $\underbrace{\text { four hundred and twelve }}_{412}$,			
5.	Write $\frac{22}{5}$ as a mixed number. Answer: $4 \frac{2}{5}$	$\begin{aligned} & 5 \text { fifths }=1 \text { whole } \\ & 22 \text { fifths }=22 \div 5 \text { wholes } \\ & 5 \longdiv { 4 } \\ & 5 \longdiv { 2 0 } - \\ & \frac{20}{2} \text { remainder } \end{aligned}$ Therefore, $\frac{22}{5}=4$ wholes and $\frac{2}{5}$ $=4 \frac{2}{5}$ as a mixed number			
6.	Arrange the numbers below in ascending order. $\begin{array}{llll} 3165 & 3651 & 3561 & 3156 \end{array}$ Answer: 3156, 3165, 3561, 3651	$\begin{array}{llll}3165 & 3651 & 3561 & 3156\end{array}$ All four numbers have their thousands digit as 3 , so we cannot distinguish the largest by looking at 3 . Looking at the hundreds digit in the order stated, we see, $1,6,5,1$. Of these, 6 is the largest, then 5 . Hence, 3651 is the largest and 3561 is the second largest number. We remain with 3165 and 3156 and observe that their tens digits are 6 and 5 . Since 6 is the larger, 3165 is larger than 3156. The numbers, in ascending order, that is, smallest first will be 3156, 3165, 3561, 3651			
7.	Add 4.75 and 2.16. Answer: 6.91	$\begin{aligned} & 4.75+ \\ & \frac{2.16}{6.91} \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
8.	Shade the fraction of the second shape to complete the statement below. Answer:	We observe that three quarters of the first square is shaded. To make up one whole, we need to add one quarter. Hence, we must shade one quarter of the second square. The whole square is made up of 16 equal parts. One quarter of 16 is 4 . Hence, we shade 4 parts.			
9.	Write the time shown on the clock below. Answer: Quarter past seven or 15 minutes past seven or 7:15	The minute hand points to 3 , which indicates 15 minutes past the hour. The hour hand is slightly beyond 7, so that the hour of 7 has been passed. The time is 15 minutes past 7 or a quarter past 7 or 7:15. (We cannot say it is a.m. or p.m.)			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
10.	In the diagram below, the length of each square is 1 cm . What is the area of triangle ABC ? Answer: $12.5 \mathrm{~cm}^{2}$ or $12 \frac{1}{2} \mathrm{~cm}^{2}$	$\begin{aligned} \mathrm{AB} & =5 \text { units long } \\ & =5 \times 1=5 \mathrm{~cm} \text { long } \\ \mathrm{AC} & =5 \text { units in height } \\ & =5 \times 1=5 \mathrm{~cm} \text { in height } \end{aligned}$ Area of triangle $\mathrm{ABC}=\frac{\text { Base } \times \text { Height }}{2}$ $\begin{aligned} & =\frac{5 \times 5}{2} \mathrm{~cm}^{2} \\ & =\frac{25}{2} \mathrm{~cm}^{2} \\ & =12.5 \text { or } 12 \frac{1}{2} \mathrm{~cm}^{2} \end{aligned}$			
11.	What is the length of the eraser? Answer: 4.5 cm				

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
12.	A glass and a jar are shown below. If the jar is full of water, how many glasses of water can be filled from the jar? Glass Answer: 10 glasses	Volume of the jar $=1 \frac{1}{4}$ litres $\begin{aligned} 1 \text { litre } & =1000 \mathrm{ml} \\ \therefore \text { Volume of the jar } & =1 \frac{1}{4} \times 1000 \mathrm{ml} \\ & =1.25 \times 1000 \\ & =1250 \mathrm{ml} \end{aligned}$ Volume of the glass $=125 \mathrm{ml}$ \therefore The number of glasses that can be filled from the jar $\begin{aligned} & =\frac{\text { Volume of jar }}{\text { Volume of glass }} \\ & =\frac{1250}{125} \\ & =10 \text { glasses } \end{aligned}$			
13.	In the diagram below, the length of each square is 2 cm . The perimeter of the shape is 40 cm . What is the length of the side AD? Answer: 10 cm	The length of each square $=2 \mathrm{~cm}$ The perimeter of the shape $=40 \mathrm{~cm}$ The length of $\mathrm{AB}+$ length of $\mathrm{BC}+$ length of $C D+$ length of $A D=40 \mathrm{~cm}$ $\begin{aligned} \therefore(4 \times 2)+(4 \times 2)+(7 \times 2) & + \text { length of CD } \\ & =40 \mathrm{~cm} \\ 8+8+14+\mathrm{CD} & =40 \mathrm{~cm} \\ 30+\mathrm{CD} & =40 \mathrm{~cm} \\ \mathrm{CD} & =40-30 \mathrm{~cm} \\ \mathrm{CD} & =10 \mathrm{~cm} \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
14.	How many grams must be removed from \mathbf{R} and placed on \mathbf{L}, to balance the scale? Answer: 200 g	L weighs 1100 g R weighs 1500 g For the scale to balance, both sides must have the same weight. To obtain this weight, we must find the total on both sides and divide this total by 2 . $\begin{aligned} (1100+1500) \div 2 & =2600 \div 2 \\ & =1300 \end{aligned}$ Hence, 1300 g must be on each side. So, if $1500-1300=200 \mathrm{~g}$ is removed from R, then R will weigh 1300 g . When this 200 g is added to L it will now weigh $1100+200=1300 \mathrm{~g}$. Both will now weigh 1300 g and the scale will balance.			
15.	Complete the bill shown below. Answer: \$1.25	Total cost for the carton, apple and cookies $\begin{array}{r} \$ 2.60 \\ +\quad \$ 4.25 \\ \$ 1.75 \\ \hline \$ 8.60 \end{array}$ Total including the lollipop $=\$ 9.85$ Hence, the cost of the lollipop is $\begin{array}{r} \$ 9.85 \\ -\quad \$ 8.60 \\ \hline \$ 1.25 \end{array}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
15.	What is the name of the solid shown below? Answer: Triangular prism	The opposite faces of the solid are the same and are triangles. Therefore, the figure or solid is a triangular prism.			
16.	Which angle in the shape below is greater than a right angle? Answer: B	A and D are right angles $\left(90^{\circ}\right)$. C is acute (less than 90°). B is obtuse (more than 90°).			
18.	Draw the line of symmetry on the letter below. Answer:				

SECTION II

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
21.	$2 \frac{3}{4}-1 \frac{1}{2}$ Answer: $1 \frac{1}{4}$	$\begin{aligned} & 2 \frac{3}{4}-1 \frac{1}{2} \\ & 2-1=1 \\ & \frac{3}{4}-\frac{1}{2}=\frac{3}{4}-\frac{2}{4}=\frac{1}{4} \\ & 1+\frac{1}{4}=1 \frac{1}{4} \end{aligned}$ OR $\begin{aligned} 2 \frac{3}{4}-1 \frac{1}{2} & =\frac{11}{4}-\frac{3}{2} \\ & =\frac{11}{4}-\frac{6}{4} \\ & =\frac{5}{4} \text { or } 1 \frac{1}{4} \end{aligned}$ OR $\begin{aligned} 2 \frac{3}{4}-1 \frac{1}{2} & =\frac{11}{4}-\frac{3}{2} \\ & =\frac{1(11)-2(3)}{4} \\ & =\frac{11-6}{4} \\ & =\frac{5}{4} \text { or } 1 \frac{1}{4} \end{aligned}$			
22.	Two-fifths of a number is 36 . What is half of the same number? Answer: 45	$\frac{2}{5}$ of a number is 36 . Therefore, $\frac{1}{5}$ of the number is $\frac{36}{2}=18$ $\begin{aligned} \text { The (whole) number } & =18 \times 5 \\ & =90 \\ \text { Half of the number } & =90 \div 2 \\ & =45 \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
23.	A bakery has two types of cupcake trays as shown below. The bakery uses the same number of each type of tray to make 216 cupcakes. How many of each type of tray are used? Answer: 12 trays	The larger tray holds 12 cupcakes. The smaller tray holds 6 cupcakes. So 1 large tray and 1 small tray will hold $12+6=18$ cupcakes. Total number of cupcakes to be made is 216. The trays hold 18 cupcakes together. Hence, the number of sets of 18 will be $\begin{aligned} & =\frac{216}{18} \\ & =\frac{108}{9} \\ & =12 \end{aligned}$ So the bakery will use 12 large trays to hold $12 \times 12=144$ cupcakes and 12 small trays to hold $12 \times 6=72$ cupcakes. The number of each type of tray used is 12 .			
24.	A cinema has 7 rows. Each row has 20 seats. All of the seats in 6 rows were completely occupied while 5 seats in the $7^{\text {th }}$ row were not occupied. How many seats were occupied altogether? Answer: 135 seats	6 rows with all 20 seats occupied will have $=20 \times 6$ $=120$ occupied seats 5 seats were not occupied in the $7^{\text {th }}$ row. So the $7^{\text {th }}$ row has $20-5=15$ occupied seats. Total number of occupied seats $\begin{aligned} & =120+15 \\ & =135 \text { seats } \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
25.	A pattern is formed using triangles as shown below. How many triangles will form the $7^{\text {th }}$ pattern? Answer: 28 triangles	Pattern Number of Triangles 1 1 2 3 3 6 4 10 The pattern for the number of triangles Filling the pattern from $4^{\text {th }}$: $10 \underbrace{15}_{+5} \underbrace{21}_{+6} \underbrace{28}_{+7}$ $7^{\text {th }}$ pattern			
26.	Paula has 125 cupcakes of three different flavours: chocolate, strawberry and vanilla. There are 45 strawberry cupcakes and an equal number of vanilla and chocolate cupcakes. Chocolate Strawberry Vanilla What percentage of the cupcakes are vanilla flavoured? Answer: 32\%	Total number of cupcakes $=125$ Number of strawberry flavoured $=45$ Therefore, the number of chocolate and vanilla together $=125-45$ $=80$ The number of vanilla and chocolate cupcakes is the same, so there are $=80 \div 2=40 \text { each }$ Percentage of vanilla flavoured cupcakes $\begin{aligned} & =\frac{\text { No. of vanilla flavoured cupcakes }}{\text { Total no. of cupcakes }} \times 100 \% \\ & =\frac{40}{125} \times 100 \% \\ & =\frac{40 \times 4}{5} \\ & =\frac{160}{5} \\ & =32 \% \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
27.	The sum of Harry, Peter and Celina's ages is 45 . Peter is 12 years older than Harry, and Celina is 15 years older than Harry. a) What is Harry's age? Answer: 6 years b) What is Celina's age? Answer: 21 years	a) Harry's age + Peter's age + Celina's age $=45$ years Peter is 12 years older than Harry and Celina is 15 years older than Harry. This is a total of $12+15=27$ years. $\begin{aligned} \text { Harry's age } & =\frac{45-27}{3} \\ & =\frac{18}{3} \\ & =6 \text { years } \end{aligned}$ b) $\begin{aligned} \text { Peter's age } & =12+6 \\ & =18 \\ \text { Celina's age } & =6+15 \\ & =21 \end{aligned}$ Alternative Method Let \square represent Harry's age. Then Peter's age is Harry's age +12 \square Celina's age is Harry's age +15 \square The sum of their ages is 45 The whole bar represents 45 Subtracting (12+15) from 45 $45-27=18$ We must distribute 18 evenly among the 3 bars. Harry's age is 6 Celina's age is $6+15=21$			

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
29.	The cost of a cellphone is $\$ 880$ plus $12 \frac{1}{2} \%$ VAT. What is the total cost of the cellphone? Answer: \$990	Cost of cellphone before VAT $=\$ 880$ $\begin{aligned} \text { VAT } & =12 \frac{1}{2} \% \\ & =\frac{12 \frac{1}{2}}{100} \times \$ 880 \\ & =\frac{25}{2 \times 100} \times \$ 880 \\ & =\$ 110 \end{aligned}$ Cost of cellphone $=\$ 880+$ $\begin{aligned} & \$ 110 \\ & \$ 990 \\ & \hline \end{aligned}$ It should be the marked price of a phone is $\$ 880$. We can't have 'cost' and then 'total cost'.			
30.	How many pieces of ribbon, each of length 25 cm , can be cut from a $6 \frac{3}{4} \mathrm{~m}$ roll of ribbon? Answer: 27 pieces	Length of 1 piece of ribbon $=25 \mathrm{~cm}$ Length of the roll is $6 \frac{3}{4} \mathrm{~m}=6 \frac{3}{4} \times 100 \mathrm{~cm}$ $=675 \mathrm{~cm}$ The number of pieces of ribbon $\begin{aligned} & =\frac{\text { Length of entire roll }}{\text { Length of } 1 \text { ribbon }} \\ & =\frac{675}{25} \\ & =\frac{135}{5} \\ & =27 \text { pieces } \end{aligned}$			

FAS-PASS
Maths

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
33.	A farmer wants to fence a rectangular plot of land that is 30 metres long and 24 metres wide. a) What length of wire is needed to completely fence the land? Answer: 108 m b) To fence the land, poles are placed 3 metres apart. How many poles are needed? Answer: 36 poles	a) Length of wire to be used will be the perimeter of the plot of land $=(24+30+24+30) \mathrm{m}$ or $=2(24+30) \mathrm{m}$ $=108 \mathrm{~m}$ b) Poles are placed 3 metres apart. Length of plot The number of 3 m intervals that will cover a length of 30 m $=30 \div 3=10$ The number of poles is one more than the intervals, so 11 poles will fence 30 m , including the corners. Note: The number of intervals is always one less than the number of poles. Width of plot The number of 3 m intervals that will cover a width of 24 m $=24 \div 3=8$ The number of poles is one more than the intervals, so 9 poles will fence 30 m . However, the corner posts are already accounted for so we must subtract 2 posts and this would leave $9-2=7$ posts Therefore, one length and one width uses $11+7=18$ poles Hence, to cover the entire rectangle the number of poles needed is $18 \times 2=36$.			

FAS-PASS
Maths

FAS-PASS
Maths

SECTION III

No.	TEST ITEMS	
41.	A group of students uses sticks to create craft items. The number of sticks form a pattern as shown below.	
Item Number of Number Sticks Used		
1	16	
2	25	
3	36	
4	49	
5	64	

a) What is the pattern rule for the number of sticks used?

Answer: (Item number + 3) ${ }^{2}$
b) Using the same rule, how many sticks will be used to make Item Number 7?

Answer: 100 sticks

c) For which item number will 121 sticks be used?

Answer: 8

d) The group decides to use 265 sticks to make two items, with each item being made from more than 100 sticks.

How many sticks will be used for each item?

Answer: Item number 8 using 121 sticks and item number 9 using 144 sticks.
WORKING COLUMN

a)	
Item Number	Number of Sticks Used
1	$16=4 \times 4=4^{2},(1+3=4)$
2	$25=5 \times 5=5^{2},(2+3=5)$
3	$36=6 \times 6=6^{2},(3+3=6)$
4	$49=7 \times 7=7^{2},(4+3=7)$
5	$64=8 \times 8=8^{2},(5+3=8)$

We are adding 3 to the number of item and then squaring the number obtained, that is, $(3+$ Item number) ${ }^{2}$.
b) When the item number is 7 , we add 3 to the 7 to obtain $7+3=10$. Then, we square 10 to obtain $10 \times 10=100$.
c) $121=11 \times 11$ or 11^{2} Hence, the item number $+3=11$ The item number $=11-3$

$$
=8
$$

d) The number of sticks used $=265$ We need to find two perfect squares whose sum is 265 . Also, each one must exceed 100.
By inspection
$265=121+144$
$121=11 \times 11$
$11-3=8$, so the item number is 8.
$144=12 \times 12$
$12-3=9$, so the item number is 9 .
Item number 8 using 121 sticks and item number 9 using 144 sticks.

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
42.	Khadija scored 820 points in a mathematics competition. Ricardo scored 46 fewer points than Khadija and 68 more than Winston. a) How many points did Winston score? Answer: 706 points b) Khadija placed $5^{\text {th }}$ in the competition and there were three students between her and Ricardo. At what position did Ricardo place? Answer: $9^{\text {th }}$ position c) Khadija wants to increase her score by 5% in her next competition. How many points should she obtain in her next competition? Answer: 861	a) Khadija scored 820 points. Ricardo scored 46 points fewer than Khadija. Therefore, Ricardo scored 820-46 points. 820 - 46 774 Ricardo score 68 points more than Winston. Therefore, Winston scored $774-68$ points. 774 - $\begin{array}{r} 68 \\ 706 \\ \hline \end{array}$ b) There are 3 students between Khadija and Ricardo. Therefore, Khadija $5^{\text {th }}$ $1^{\text {st }}$ student after $5+1=6^{\text {th }}$ $2^{\text {nd }}$ student after $6+1=7^{\text {th }}$ $3^{\text {rd }}$ student after $7+1=8^{\text {th }}$ And Ricardo $8+1=9^{\text {th }}$ c) Khadija scored 820 points. Khadija wishes to increase her score by 5% $\begin{aligned} \text { Increase } & =\frac{5}{100} \times 820 \\ & =41 \text { points } \end{aligned}$ In the next competition, Khadija's score should be $=$ Present score + Expected increas $=820+41$ $=861$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
43.	Sita bought the washing machine shown below. a) She made a first payment of $\$ 1385$. How much money does she still have to pay? Answer: \$2680 b) Sita was charged 20% interest on the remaining money. Calculate the new balance. Answer: \$3 216 c) Sita paid the balance in 2 years. The amount paid in the first year was three times the amount paid in the second year. Calculate the amount of money Sita paid in the second year. Answer: \$804	a) Marked price of the washing machine $=\$ 4065$ First payment $=\$ 1385$ The amount still to be paid $=$ Cost price - First payment = \$4065-\$1385 = \$2680 \$4065- $\$ 1385$ $\$ 2680$ b) Interest is 20% of the remainder $\begin{aligned} & =\frac{20}{100} \times \$ 2680 \\ & =\$ 536 \end{aligned}$ Therefore, Sita's new balance = Amount owed + Interest $=\$ 2680+\$ 536$ $=\$ 3216$ \$2680 + $\$ 536$ $\$ 3216$ c) Balance to be paid is $\$ 3216$ and in two years. The amount paid in the first year is 3 times the amount paid in the second year. Hence, she pays three quarters of the amount in the first year and the remaining quarter in the second year. The amount paid in the second year $\begin{aligned} & =\frac{1}{4} \times \$ 3216 \\ & =\$ 804 \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
	d) The flying time from Miami to Boston is 1 hour and 40 minutes. A flight was scheduled to depart Miami at 10:00 a.m. The flight left $2 \frac{1}{2}$ late. At what time did the flight arrive in Boston? Answer: 2:10 p.m.	d) Scheduled time to leave Mimai is 10:00 a.m. Duration of the delay $=2 \frac{1}{2}$ hours Hence, departure time $\begin{aligned} & =10: 00+ \\ & \frac{2: 30}{\underline{12: 30}} \text { p.m. } \end{aligned}$ Time of flight $=1$ hour 40 minutes Therefore, arrival time at Boston is 1 hour 40 minutes after 12:30. $70 \mathrm{~min}=1 \text { hour }+10 \text { minutes }$ The flight arrived at 2:10 p.m.			

END OF TEST

