SEA MATHEMATICS YEAR 2017

Section I

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
6.	Change $3 \frac{5}{6}$ to an improper fraction. Answer: $\frac{23}{6}$	$\begin{aligned} & 1 \text { whole }=\frac{6}{6} \\ & 3 \text { wholes }=3 \times \frac{6}{6}=\frac{18}{6} \\ & \quad 3 \frac{5}{6}=3 \text { wholes }+\frac{5}{6}=\frac{18}{6}+\frac{5}{6}=\frac{23}{6} \end{aligned}$ Alternatively, we can use the algorithm: $\begin{aligned} 3 \frac{5}{6} & =\frac{(3 \times 6)+5}{6} \\ & =\frac{23}{6} \end{aligned}$			
7.	Write the next term in the sequence. $32, \quad 16, \quad 8$ \qquad Answer: 32, 16, 8, 4	We notice the following pattern: $32 \longrightarrow \div \underset{\div 2}{\longrightarrow} 8 \xrightarrow[\div 2]{ } 4$ The next term in the sequence is 4 .			
8.	What is 25% of 40 ? Answer: 10	$25 \%=\frac{25}{100}$ So, 25% of 40 is $\frac{25}{100} \times 40=10$			
9.	A clock is shown below. Write the time shown on the clock in digital notation. Answer: 8:35	The hour hand is between 8 and 9 . So, it is some minutes after 8 o' clock. The minute hand points to 7 . Between 12 and 7, there are 7 five-minute intervals. So, it is $7 \times 5=35$ minutes past the hour. So, it is 35 minutes past 8 o'clock or $8: 35$.			

Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
10.	$2750 \mathrm{~g}=$ \qquad kg Answer: $2750 \mathrm{~g}=2.75 \mathrm{~kg}$	$\begin{aligned} 1000 \mathrm{~g} & =1 \mathrm{~kg} \\ 1 \mathrm{~g} & =\frac{1}{1000} \mathrm{~kg} \\ 2750 \mathrm{~g} & =\frac{1}{1000} \times 2750 \mathrm{~kg} \\ & =2.75 \mathrm{~kg} \end{aligned}$			
11.	In the diagram below, each small square has an area of $9 \mathrm{~cm}^{2}$. Area $\square / \Delta=9 \mathrm{~cm}^{2}$ Calculate the area of Shape A. Answer: $144 \mathrm{~cm}^{2}$	The shape is composed of 16 squares. So the area of the shape $=16 \times 9 \mathrm{~cm}^{2}$ $=144 \mathrm{~cm}^{2}$			
12.	Mala bought the items shown below. Calculate the total mass of the items. Answer: $17 \frac{1}{4} \mathrm{~kg}$	$\begin{array}{r} 10 \\ +\quad 5 \frac{1}{4} \\ \hline \quad 2 \\ \hline 17 \frac{1}{4} \\ \hline \end{array}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
13.	The perimeter of a square is 56 cm . What is the length of one side of the square? Answer: 14 cm	Perimeter $=$ Length of side $\times 4$ Length of one side $=\frac{\text { Perimeter }}{4}$ Length of one side of the square $=\frac{56}{4}$ $=14 \mathrm{~cm}$			
14.	Akeem is making juice for a class party. For every 1 litre of water, he uses 100 ml of juice mix. If he uses 4 litres of water, how many ml of juice does he use? Answer: 400 ml	1 litre of water requires 100 ml of mix. So 4 litres of water will require $100 \times 4 \mathrm{ml}=400 \mathrm{ml}$ of mix.			
15.	The lengths of a pencil and a pen are shown below. What is the difference in length between the pencil and the pen? Answer: 3 cm	$\begin{aligned} \text { Length of pen } & =10-2 \\ & =8 \mathrm{~cm} \\ \text { Length of pencil } & =8-3 \\ & =5 \mathrm{~cm} \end{aligned}$ Difference in length between the pencil $\begin{aligned} \text { and the pen } & =8-5 \mathrm{~cm} \\ & =3 \mathrm{~cm} \end{aligned}$			

No.	TEST ITEMS	working columi	Do Not Write Here		
			KC	AT	PS
16.	Which of the angles below is obtuse? Answer: D	A is reflex. B is acute. C is straight. D is obtuse.			
17.	Complete the shape below using AB as the line of symmetry. Answer:				

Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
18.	Complete the drawing below to show the net of a cube. Answer:				
19.	The table below shows the goals scored by 3 players in a football match. A total of 15 goals were scored. How many goals does represent? Answer: 2 goals	The total number of $\mathbb{(1)}=7 \frac{1}{2}$ So $7 \frac{1}{2}$ © represents 15 goals. So $1(1)$ represents $\frac{15}{7 \frac{1}{2}}=2$ goals .			

											Do Not Write Here		
											KC	AT	PS

SECTION II

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
21.	$3 \frac{4}{5}+2 \frac{2}{3}$ Answer: $6 \frac{7}{15}$	$\begin{aligned} & 3 \frac{4}{5}+2 \frac{2}{3} \quad 3+2=5 \\ & \frac{4}{5}+\frac{2}{3}=\frac{3(4)+5(2)}{15} \\ &=\frac{12+10}{15} \\ &=\frac{22}{15} \\ &=1 \frac{7}{15} \end{aligned}$ So $5+1 \frac{7}{15}=6 \frac{7}{15}$ $\begin{array}{r} \text { Alternatively: } \\ \frac{4}{5} \times \frac{3}{3}=\frac{12}{15} \\ \frac{2}{3} \times \frac{5}{5}=\frac{10}{15} \\ \begin{aligned} \frac{12}{15}+\frac{10}{15} & =\frac{22}{15} \\ & =1 \frac{7}{15} \\ 5+1 \frac{7}{15} & =6 \frac{7}{15} \end{aligned} \end{array}$			
22.	Two-thirds of a number is 48 . What is three-quarters of the number? Answer: 54	$\frac{2}{3}$ of the number is 48 . The number is $\begin{aligned} 48 \div \frac{2}{3}= & \frac{48}{1} \times \frac{3}{2}=72 \\ \frac{3}{4} \text { of } 72= & \frac{3}{4} \times 72 \\ & =54 \end{aligned}$ Alternatively, Two-thirds of a number is 48 One third of the number is $48 \div 2=24$ The whole number is: $24 \times 3=72$ One quarter of the number is: $72 \div 4=18$ Three quarters of the number is: $18 \times 3=54$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
23.	Ryan picked a bucket of plums. He made 13 heaps. Each heap contained 6 plums and had 3 extra plums. How many plums did Ryan pick? Answer: 81	13 heaps of 6 plums will have $13 \times 6=78$ plums. If there are 3 extra plums after making the heaps, then Ryan picked $78+3=81$ plums (The language of the question is unclear as to whether there were 3 extra plums with every heap or there were three extra plums after all 13 heaps were made)			
24.	Pictures are numbered in sequence from 1 to 152 . Zack is sticking 8 pictures in order on a Bristol board to form posters. a) How many posters can Zack make? Answer: 19 posters b) On which poster will the picture numbered 60 be found? Answer: $8^{\text {th }}$ poster	a) The number of posters Zack can make is; $\begin{array}{r} 8 \lcm{15} 5 \\ 199 \end{array}$ b) Each poster has 8 pictures $1^{\text {st }}$ poster will have pictures $1-8$ $2^{\text {nd }}$ poster will have pictures 9-16 $3^{\text {rd }}$ poster will have pictures 17-24 $4^{\text {th }}$ poster will have pictures 25-32 $5^{\text {th }}$ poster will have pictures $33-40$ $6^{\text {th }}$ poster will have pictures 41-48 $7^{\text {th }}$ poster will have pictures 49-56 $8^{\text {th }}$ poster will have pictures 57-64 Since 60 is between $57-64$, the picture numbered 60 will be on the $8^{\text {th }}$ poster.			
25.	Jada is 9 years old. The sum of her parents' ages is the square of Jada's age. Her father is 11 years older than her mother. How old is Jada's mother? Answer: 35 years	The square of Jada's age is $9 \times 9=81$ Her father is 11 years older than her mother. Father's age $=$ Mother's age +11 Both their ages total 81 Father's age + Mother's age $=81$ (Mother's age +11) + Mother's age $=81$ Mother's age + Mother's age $=81-11=70$ $2 \times$ Mother's age $=70$ Mother's age $=70$ ' $2=35$ So, the father will be $35+11=46$ and the mother will be 35 years old.			

Maths

Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
28.	There are 300 students in an auditorium. Of these, 210 are boys. a) What percentage of the students is girls? Answer: 30\% b) If 60% of the students leave the auditorium, how many students are left? Answer: 120 students	a) Number of students $=300$ $\begin{aligned} \text { Number of boys } & =210 \\ \text { Number of girls } & =300 \\ & -\frac{210}{90} \end{aligned}$ $\begin{aligned} \text { Percent that are girls } & =\frac{90}{300} \times 100 \\ & =30 \% \end{aligned}$ Alternatively: Percent that are boys $=\frac{210}{300} \times 100$ $=70 \%$ Percent that are girls $\begin{aligned} & =(100-70) \% \\ & =30 \% \end{aligned}$ b) 60% of the $300=\frac{60}{100} \times 300$ $=180$ 180 left the auditorium. The number of students that remained in the auditorium: $\begin{array}{r} 300 \\ -180 \\ \hline 120 \end{array}$			
29.	Mrs. Jones borrowed $\$ 10000$ from a bank. She has to repay the loan in 7 years at a rate of 12% interest per annum. a) Calculate the simple interest Mrs. Jones must pay. Answer: \$8 400 b) What is the total amount of money that Mrs. Jones must repay? Answer: $\$ 18400$	a) $\begin{aligned} \text { S.I. } & =\frac{P R T}{100} \\ & =\frac{\$ 10000 \times 12 \times 7}{100} \\ & =\$ 8400 \end{aligned}$ b) Amount to repay $\begin{aligned} & =\text { Principal }+ \text { Interest } \\ & =10000 \\ & +\frac{8400}{18400} \end{aligned}$			

Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
31.	The routes from Aaron's home to his school are shown below. What is the SHORTEST distance from Aaron's home to his school? Answer: 9 km 623 m	From the diagram the distance from home \rightarrow Flamingo Avenue \rightarrow School is $\begin{aligned} =4 \frac{1}{8}+5 & \frac{1}{2} \\ & =4+5+\frac{1}{8}+\frac{1}{2} \\ & =9+\frac{1+4}{8} \\ & =9 \frac{5}{8} \mathrm{~km} \\ \frac{5}{8} \mathrm{~km} & =\frac{5}{8} \times 1000=625 \mathrm{~m} \\ 9 \frac{5}{8} & =9 \mathrm{~km} 625 \mathrm{~m} \end{aligned}$ The distance from home \rightarrow Hibiscus Crescent \rightarrow Flamingo Avenue \rightarrow School is ($2 \mathrm{~km} \mathrm{75m}+2 \mathrm{~km} 48 \mathrm{~m}+5 \frac{1}{2} \mathrm{~km}$). Note: Since there are two routes, the word should be SHORTER not SHORTEST. Also, the diagram is misleading since the straight path between two points cannot be longer than a curved path between the same two points.			
32.	A phone company's rates for prepaid calls are shown below. Cindy spoke to her friend for 20 minutes during the day and 50 minutes in the night. What is the total cost of the calls? Answer: $\$ 20.50$	20 minutes at $\$ 0.40$ per minute $=\$ 0.40 \times 20=\$ 8.00$ 50 minutes at $\$ 0.25$ per minute $=\$ 0.25 \times 50=\$ 12.50$ $\begin{aligned} \text { Total cost of the calls } & =\$ 8.00+\$ 12.50 \\ & =\$ 20.50 \end{aligned}$			

Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
34.	The diagram below shows a piece of kite paper that is to be cut into triangular flags. Each flag has a base of 15 cm and a height of 12 cm. a) What is the greatest number of flags that can be made from the sheet of kite paper? Answer: 66 flags b) Andrew wants to make 144 flags. How many sheets of kite paper will he need? Answer: 3 sheets	a) The dimensions of the flag stated in the introduction differ from the dimensions shown in the diagram. Using the data stated in the introduction, the flag would look like: This question cannot be solved by dividing the area of the kite paper by the area of one flag ($6480 \div 90=72$ flags), because in practice, it is impossible to layout the flags and have no wastage. The layout that would give the greatest number of flags is shown below. There are 66 flags in all with eleven in each row. Notice that in each row there is wastage at both ends. The wastage (unshaded area) is equivalent to the area of 6 flags. b) To make 144 flags, Andrew would require $\frac{144}{66}=2 \frac{2}{11}$ or 3 sheets of kite paper (Kite paper is sold in sheets) Note: The area used for 66 flags is $90 \mathrm{~cm}^{2} \times 66=5940 \mathrm{~cm}^{2}$ The area wasted is $6480-5940 \mathrm{~cm}^{2}=540 \mathrm{~cm}^{2}$, which is equivalent to 6 flags (90×6).	72 cm		

Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
	b) Draw the net of the solid.	b) The net looks like: Answer:			
37.	The diagram below shows triangle ABC and its image after two movements. a) The first movement of triangle $A B C$ is a flip about the mirror line. Describe fully the second movement. Answer: A slide or translation of 2 units horizontally to the left	a) The first movement shows the figure below. The image after the second movement is shown below. To describe the second movement we observe that the image DEF slid 2 units horizontally to the left. This movement is called a translation.			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
	b) Triangle DEF makes a quarter turn about point F in a clockwise direction. On the diagram, mark the new position of E . Answer:	b) Triangle DEF makes a quarter turn about point F in a clockwise direction, its new position is shown below.			
38.	There is an incomplete quadrilateral on the grid below. The quadrilateral has only one pair of parallel lines. Complete the shape. Answer: or	Since the diagram shows an incomplete quadrilateral, then the two given lines may even be extended. Either of the given lines may be extended and any one drawn parallel to the line opposite to it. For example, either			

Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
	Answer:	c) The completed regular polygon is shown below.			
40.	The tally chart below shows the votes obtained by 4 students for the post of class prefect. If 28 students voted, complete the tally and frequency for Satesh. Answer:	The number of votes secured by Karen 6 Atiba 4 + Martin 11 21 Satesh would have received $\begin{array}{r} 28 \\ -21 \\ \hline 7 \\ \hline \end{array}$			

Section III

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
41.	Five runners competed in a race on sports day. The table below shows the times recorded for 4 runners. a) Calculate the average running time for the FOUR given runners. Answer: 17.0 seconds b) Javed won the race by 0.3 seconds. What was his winning time? Answer: 16.2 seconds c) The winning time in last year's race was 16.3 seconds. What is the least amount of time by which Mark must improve to beat last year's winning time? Answer: 1.6 seconds to the nearest second.	a) Total time by the four given runners $\begin{array}{r} 16.5 \\ +17.8 \\ 16.9 \\ 16.8 \\ \hline 68.0 \\ \hline \end{array}$ $\text { Average time }=68 \div 4$ $=17$ b) The shortest time among the 4 given runners is 16.5 seconds. Since Javed won by 0.3 seconds, Javed's time $\begin{array}{r} =16.5 \\ -\quad 0.3 \\ \hline 16.2 \\ \hline \end{array}$ c) The difference between Mark's time and last year's winning time $\begin{array}{r} =17.8 \\ -\frac{16.3}{1.5} \\ \hline \end{array}$ Note: A time of 1.5 seconds would equal last year's winning time. To win, Mark must improve by greater than 1.5 seconds. It is impossible to write the least amount of time as this could be $1.51,1.501, \ldots$ Anytime greater than 1.5 seconds will be correct. However, since all measures were given to one decimal place, we choose to write the least amount of time as 1.6 seconds.			

Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
42.	There are 450 mangoes and oranges in a fruit stall. There are twice as many mangoes as there are oranges. a) How many oranges are in the stall? Answer: 150 oranges b) $\frac{2}{3}$ of the oranges are green and others are ripe. How many oranges are ripe? Answer: 50 oranges c) A box can hold 24 mangoes. How many boxes are needed to pack ALL the mangoes? Answer: 13 boxes	a) There are twice are many mangoes as oranges. Hence, $\frac{2}{3}$ of the 450 fruits are mangoes and $\frac{1}{3}$ of 450 fruits are oranges. So, there are $\frac{1}{3} \times 450=150$ oranges in the fruit stall. b) $\frac{2}{3}$ of the oranges are green. $\therefore \frac{1}{3}$ of the oranges are ripe. $\begin{aligned} \text { No. of ripe oranges } & =\frac{1}{3} \times 150 \\ & =50 \end{aligned}$ c) Number of mangoes $=300$ $\begin{aligned} \text { Number of boxes required } & =\frac{300}{24} \\ & =12.5 \end{aligned}$ So, 13 boxes will be required, though the $13^{\text {th }}$ box will not be completely filled. Note: There is some ambiguity in the wording of part (a) of this question. It would have been better to say: In a fruit stall, only mangoes and oranges are sold. There are 450 fruits in all and the number of mangoes is twice the number of oranges.			

Maths

Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
44.	A circle of radius 21 cm is shown below. a) Calculate the circumference of the circle. Answer: 132 cm b) The circle is cut into 8 equal parts as shown below. The parts are used to form the shape below. Calculate the perimeter of the shape. Answer: 174 cm	a) $\begin{aligned} \text { Circumference } & =2 \pi r \\ & =2 \times \frac{22}{7} \times 21 \mathrm{~cm} \\ & =132 \mathrm{~cm} \end{aligned}$ b) The length of all eight curved edges of the shape total 132 cm . The two straight outer edges are 21 cm each. $\begin{aligned} \text { Perimeter of shape } & =132+21+21 \\ & =174 \mathrm{~cm} \end{aligned}$			

Maths

Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
46.	The table below shows the marks obtained by 2 students in 5 subjects. a) Calculate the mean mark obtained by Yvette? Answer: 68 b) How many marks did Barry score in Music? Answer: 31 c) A mean of 55 is required to get a Grade C. How many MORE marks did Barry need in order to get a Grade C? Answer: 35 d) Yvette needed 20 MORE marks to get a Grade B. What is the least amount of marks required to get a Grade B? Answer: The least amount of marks will be 360	a) Total of Yvette's marks $\begin{aligned} & =75+60+70+80+55 \\ & =340 \end{aligned}$ $\begin{aligned} \text { Mean mark } & =\frac{340}{5} \\ & =68 \end{aligned}$ b) Barry's mark in 4 subjects $\begin{aligned} & =63+74+47+25 \\ & =209 \end{aligned}$ Barry's score in music $\begin{aligned} & =240 \\ & -\underline{209} \\ & \hline \end{aligned}$ c) A mean of 55 in 5 subjects means that the total is $55 \times 5=275$. So Barry requires $\begin{array}{r} 275 \\ -240 \\ \hline 35 \text { more marks } \\ \hline \end{array}$ d) To get a B, Yvette needed 20 more marks. So, a grade B will require $340+20=360$ marks			

END OF TEST

