FAS-PASS
Maths
SEA MATHEMATICS YEAR 2016
SECTION I

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
5.	Write $2 \frac{1}{6}$ as an improper fraction. Answer: $\frac{13}{6}$	$\begin{aligned} 2 \frac{1}{6} & =\frac{(2 \times 6)+1}{6} & & 2 \frac{1}{6} \end{aligned}=1+1+\frac{1}{6} .$			
6.	Approximate 2875 to the NEAREST thousand. Answer: 3000	2875 is 3000 correct to the nearest thousand.			
7.	Write the next term in the following sequence. $27, \quad 36, \quad 45, \quad 54,$ Answer: 63	Each term is increased by 9 from the previous term. Next term $=54$ $\begin{array}{r} +9 \\ \hline 63 \\ \hline \end{array}$			
8.	A baker uses 6 eggs to make a cake. How many eggs will he use to make 9 similar cakes? Answer: 54 eggs	To bake 1 cake the baker uses 6 eggs. To bake 9 cakes the baker will use 9 times as many eggs. $\begin{aligned} & =6 \mathrm{eggs} \times 9 \\ & =54 \mathrm{eggs} . \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
11.	The perimeter of the rectangular field shown below is 50 m . What is the length, l, of this field? Answer: 16 m	$\begin{array}{ll} \text { The perimeter of the field } & =50 \\ 2 \times \text { length }+2 \times \text { width } & =50 \\ 2 \times \text { length }+2 \times 9 & =50 \\ 2 \times \text { length }+18 & \\ 2 \times 50 \\ 2 \times \text { length } & \\ 2 \times 50-18 \\ \text { length } & \\ \text { length } & =32 \\ \text { length } & \\ & =16 \end{array}$			
12.	The table below shows the time Diego took to run the same race in 2014 and 2015. Diego's Running Times In which year did Diego run the faster race? Answer: 2015	In 2014 Diego takes 1 hour 18 minutes. In 2015 Diego takes 1 hour 11 minutes. 1 hour 11 minutes is a shorter time than 1 hour 18 minutes. \therefore Diego runs the race faster in 2015. NOTE-One cannot run the SAME race at two different times. Also, a race cannot be faster, however the runner can be faster.			
13.	Mrs. Ali bought a laptop for $\$ 2500$ and sold it for $\$ 2000$. How much money did she lose? Answer: \$500	Cost price of laptop $=\$ 2500-$ Selling price of laptop $=\$ 2000$ Loss $=\$ 500$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
14.	The scale below shows the mass of a bag of sugar. How much MORE sugar is needed to obtain a mass of 3 kg ? Answer: $\frac{1}{2} \mathbf{k g}$	The reading on the scale indicates that the mass of sugar appears to be $2 \frac{1}{2} \mathrm{~kg}$. To obtain the mass of 3 kg , the amount more of the sugar required $\begin{aligned} & =\left(3-2 \frac{1}{2}\right) \mathrm{kg} \\ & =\left(\frac{6}{2}-\frac{5}{2}\right) \mathrm{kg} \\ & =\frac{1}{2} \mathrm{~kg} \end{aligned}$			
15.	The box below contains cubes each of side 1 cm . The box is to be filled completely with cubes of the same size. How many cubes can the box hold when filled completely? Answer: 60 cubes	The length of the box holds 5 cubes. The width of the box holds 4 cubes. The height of the box holds 3 cubes. The number of cubes required to fill the box is $5 \times 4 \times 3=60$ cubes. Note: The cubes being of length 1 cm is irrelevant.			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
20.	Each of the 25 students in a class chose ONE favourite subject. The results are shown on the graph below. The number of students who chose English is not shown. Favourite Subjects How many students chose English as their favourite subject? Answer: 6 students	Number of students who chose Maths $=6$ Number of students who chose Science $=7$ Number of students who chose Social $\text { Studies }=6$ Total number of students who chose Maths, Science and Social Studies $\begin{aligned} & =6+7+6 \\ & =19 \end{aligned}$ Therefore the number of students who chose English $=$ Total number of students in class - the number of students who chose Maths, Science and Social Studies $=25-19$ $=6 \text { students }$			

FAS-PASS
 Maths

SECTION II

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
24.	There are 800 students in a school. If 320 are boys, what percentage of the students is girls? Answer: 60\%	$\begin{aligned} & \text { Number of students in the school }=800 \\ & \text { Number of boys }=320 \\ & \begin{aligned} \therefore \text { The number of girls } & =800-320 \\ & =480 \end{aligned} \end{aligned}$ Percent of girls $\begin{aligned} & =\frac{\text { Number of girls }}{\text { Number of students }} \times 100 \\ & =\frac{480}{800} \times 100 \% \\ & =60 \% \end{aligned}$ OR $\begin{aligned} \text { Percent of boys }= & \frac{320}{800} \times 100 \% \\ & =40 \% \end{aligned}$ \therefore Percent of girls $=(100-40) \%$ $=60 \%$			
25.	In Mrs. Chin's class, $\frac{1}{3}$ of the students drank juice, $\frac{1}{4}$ of the remainder drank water and the others drank soft drinks. a) What fraction of the class drank water? Answer: $\frac{1}{6}$ b) If there are 48 students in Mrs. Chin's class, how many students drank soft drinks? Answer: 24 students	a) Fraction that drank juice $=\frac{1}{3}$ Remainder $=1-\frac{1}{3}=\frac{3}{3}-\frac{1}{3}=\frac{2}{3}$ $\frac{1}{2}$ of the remainder drank water. \therefore The fraction who drank water $\begin{aligned} & =\frac{1}{4} \text { of } \frac{2}{3} \\ & =\frac{1}{4} \times \frac{2}{3}=\frac{1}{6} \end{aligned}$ b) The fraction who drank water $=\frac{1}{6}$ The fraction who drank juice $=\frac{1}{3}$ The fraction who drank either water or juice $=\frac{1}{3}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}$ \therefore The fraction who drank soft $\text { drinks }=1-\frac{1}{2}=\frac{1}{2}$ Number of students who drank soft $\text { drinks }=\frac{1}{2}(48)=24 \text { students }$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
26.	In a school, each class has 7 charts to display on a notice board. Each chart must have 9 thumb tacks to support it. a) How many thumb tacks are needed if three classes have to display their charts on the notice board? Answer: 189 thumb tacks b) The three classes have a total of 171 thumb tacks. How many charts could NOT be placed on the notice board? Answer: 2 charts	a) One chart required 9 thumb tacks. Therefore, 7 charts will require 7×9 thumbtacks $=63$ thumb tacks. Three classes will require 63×3 thumb tacks $=189$ thumbs tacks b) The classes have a total of 171 thumb tacks and each chart uses 9. Therefore, the number of charts that can be displayed $=\frac{171}{9}$ $\begin{array}{r} 9 \lcm{171} \\ -\frac{9}{8} 1 \\ -\frac{81}{0} \\ =19 \text { charts } \\ - \end{array}$ The total number of charts that are to be displayed by the three classes $=7 \times 3=21$ charts $\therefore 21-19=2$ charts, will not be able to be displayed.			
27.	The square of a number is 9 less than the sum of 28 and 45 . What is the number? Answer: 8	The sum of 28 and 45 $\begin{aligned} & =28 \\ & +\frac{45}{73} \\ & \hline \end{aligned}$ $\begin{aligned} & 9 \text { less than } 73 \text { is } 73-9 \\ & =73 \\ & -\quad 9 \\ & \hline 64 \end{aligned}$ The square of the number is 64 . Therefore, the number is 8 , since $8 \times 8=64$			

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
29.	The clock below shows the time Mark usually wakes up. a) Write the time shown on the clock. Answer: 5:30 or half past five b) Mark slept for an additional 15 minutes. Write the time Mark awoke using digital notation. Answer: 5:45	a) The hour hand is between 5 and 6 . The hour is therefore after 5 but not yet 6 . The minute hand is at 6 . This shows 30 minutes after 5 o'clock or 5:30 or half past five. b) Mark slept for a further 15 minutes. \therefore Mark awoke at 5:30 $\begin{array}{r} +\quad: 15 \\ \hline 5: 45 \\ \hline \end{array}$			
30.	The pumpkin shown in the diagram below has a mass of 2604 g . What is the mass of the pumpkin to the nearest kilogram? Answer: 3 kg	Mass of pumpkin $=2604 \mathrm{~g}$ $1000 \mathrm{~g}=1 \mathrm{~kg}$ $\begin{aligned} \therefore \text { Mass of pumpkin, in } \mathrm{kg}, & =\frac{2604}{1000} \mathrm{~kg} \\ & =2.604 \mathrm{~kg} \end{aligned}$ \therefore The mass of the pumpkin, correct to the nearest kilogram, is 3 kg .			

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
31.	At the airport check in counter, Camille placed the following bags on the scale. What is the TOTAL mass, in kilograms, of the bags? Answer: 31 kg	Total mass of all three bags $\begin{aligned} & =4.5 \mathrm{~kg}+1500 \mathrm{~g}+25 \mathrm{~kg} \\ & 1000 \mathrm{~g}=1 \mathrm{~kg} \\ & \begin{aligned} \therefore 1 \mathrm{~g} & =\frac{1}{1000} \mathrm{~kg} \end{aligned} \\ & \begin{aligned} 1500 \mathrm{~g} & =\frac{1}{1000} \times 1500 \mathrm{~kg} \\ \quad & =1.5 \mathrm{~kg} \end{aligned} \end{aligned}$ For all three bags, in kg, $\begin{aligned} & \therefore \text { Total mass }= 4.5 \\ &+1.5 \\ & 25.0 \\ & \hline 31.0 \\ & \hline \end{aligned}$			
32.	A television costs $\$ 5000$. During a sale, it was marked down to $\$ 3500$. a) What was the amount of the discount? Answer: \$1 500 b) What was the percentage discount on the television? Answer: 30\%	a) Original or marked price $=\$ 5000$ Sale price $($ after discount $)=\$ 3500$ $\begin{aligned} & \therefore \text { Discount }=\$ 5000 \\ &-\$ 3500 \\ & \hline \end{aligned}$ Note: The cost of an item is what the purchaser pays for it (inclusive of taxes, discounts etc.) So, $\$ 5000$ is not the cost price but the original or marked price. b) Percentage discount $\begin{aligned} & =\frac{\text { Discount }}{\text { Original price }} \times 100 \\ & =\frac{\$ 1500}{\$ 5000} \times 100 \% \\ & =30 \% \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
	c) The store adds a delivery fee of 5% of the sale price. Calculate the amount that a customer would pay altogether for the television. Answer: \$3 675	c) Delivery fee $=5 \%$ of $\$ 3500$ $\begin{aligned} & =\frac{5}{100} \times \$ 3500 \\ & =\$ 175 \end{aligned}$ If the customer requires delivery they would have to pay $\begin{array}{r} \$ 3500 \\ +\$ 175 \\ \hline \$ 3675 \\ \hline \end{array}$ NOTE-A delivery fee is optional, so the customer really pays $\$ 3500$ for television set. What was calculated is the cost, plus delivery for a customer who chooses to pay for delivery.			
33.	Mrs. Jones built a square garden in her rectangular yard as shown in the diagram below. One side of the garden, AB , is against a wall. a) What is the area of the garden? Answer: $100 \mathrm{~m}^{2}$ b) Mrs. Jones wants to enclose the garden with a wire fence. What length of wire, in metres, is required to fence the garden? Answer: 30 m	a) The length of the garden $\begin{aligned} & =16-(5+1) \\ & =10 \mathrm{~m} \end{aligned}$ Since the garden is a square, the $\begin{aligned} \text { area } & =(10 \times 10) \mathrm{m}^{2} \\ & =100 \mathrm{~m}^{2} \end{aligned}$ b) One side of the garden is against the wall and so we assume that it is not fenced. Therefore, the length of wire required to fence the remaining three sides of the garden $\begin{aligned} & =(10+10+10) \mathrm{m} \\ & =30 \mathrm{~m} \end{aligned}$			

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
38.	Pete is standing, facing north, in the middle of a circular field. a) Pete turns clockwise to face Target \mathbf{A}. From the following list, circle the type of angle through which he turns. Answer: Obtuse Reflex b) From Target \mathbf{A}, Pete continues to turn clockwise to face Target B. Through how many right angles does he turn in this single movement? Answer: 2 right angles c) Pete continues to turn clockwise to face Target C. What is the TOTAL number of quarterturns that Pete makes? Answer: 3 quarter turns	a) The angle of turn is less than a right angle. This is an acute angle. b) Pete turns one half turn (or a straight angle) from A to B . 1 half turn $=2$ right angles c) To face C, Pete turns from north to west or 270° $=\frac{270^{\circ}}{90^{\circ}}$ $=3$ quarter turns			

FAS-PASS
Maths

SECTION III

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
42.	The four cups below, with numbers, are arranged in a line as shown. A person is given 3 balls to knock down any 3 cups. The numbers are added and a prize given for EXACT scores as shown below. Monkey 521 455 Bear 619 a) Tammy knocks down 3 cups marked 195, 163 and 97. Which toy does she win? Answer: Bunny b) Shana knocks down the cups marked 97 and 261. Which cup must she now knock down to win the monkey? Answer: Cup marked 163 c) Which THREE cups must Destra knock down to win the bear? Answer: Cups marked 195, 163 and 261	a) Tammy knocks down cups which totals $\begin{array}{r} 195 \\ +163 \\ \quad 97 \\ \hline 455 \\ \hline \end{array}$ Therefore, Tammy wins the bunny. b) Shana knocks down cups with totals $\begin{array}{r} 97 \\ +\quad 261 \\ \hline 358 \\ \hline \end{array}$ To win the monkey, Shana requires $\begin{array}{r} 521 \\ -358 \\ \hline 163 \\ \hline \end{array}$ The cups that remain are marked 195 and 163. Shanna needs to knock down the cup marked 163 to win the monkey. c) To win the bear, Destra's must knock down three cups which must total 619. Destra must knock down the cups marked 195, 163 and 261 in order to win the bear.			

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
43.	Asha wants to buy a smart phone. Three stores have the model she wants advertised as follows. What is the cost of the smart phone at a) I-Shack? Answer: \$4 640 b) Mobile-T? Answer: \$3740 c) Which of the THREE stores will give Asha the best buy? Answer: Mobile-T	a) Price of the phone at I-Shack $=\$ 5800-$ Discount of 20% off the marked price $\begin{aligned} \text { Discount } & =\frac{20}{100} \times \$ 5800 \\ & =\$ 1160 \end{aligned}$ \therefore The price of the phone at I-Shack OR The price of the phone at I-Shack $\begin{aligned} & =(100-20) \% \text { of } \$ 5800 \\ & =80 \% \text { of } \$ 5800 \\ & =\frac{80}{100} \times \$ 5800 \\ & =\$ 4640 \end{aligned}$ b) Price of the phone at Mobile-T $=\$ 5610-\frac{1}{3}$ of $\$ 5610$ (discount) $\frac{1}{3} \text { of } \$ 5610=\$ 5610 \div 3$ = \$ 1870 Price paid $\begin{aligned} & =\$ 5610 \\ & -\$ 1870 \\ & \hline \$ 3740 \\ & \hline \end{aligned}$ OR Price of the phone at Mobile-T $\begin{aligned} & =\left(1-\frac{1}{3}\right) \text { of } \$ 5610 \\ & =\frac{2}{3} \times \$ 5610 \quad(\$ 5610 \times 2) \div 3 \\ & =\$ 3740 \end{aligned}$ c) The price of the phone at Cell-G is $\$ 3860$. If 'best buy' is supposed to mean the lowest price, then the best buy is at Mobile-T since $\$ 3740$ is less than both $\$ 4640$ and $\$ 3860$.			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
44.	A circular work station in a factory occupies $181 \mathrm{~m}^{2}$ in the center of a square-shaped room as shown below. A side of the room is 16 m long. Dan wants to tile the floor space around the work station. a) What is the area of the floor to be tiled? Answer: 75 m 2 b) Dan uses square tiles of 0.6 m long. What is the LEAST number of tiles needed to cover the room completely? Answer: 209 tiles	a) Area of floor to be tiled is the area around the work station in m^{2} $=$ Area of square floor - Area of the circular work station $\begin{aligned} = & (16 \times 16)-181 \\ = & 256-181 \\ = & 256 \\ & \frac{-181}{75} \mathrm{~m}^{2} \end{aligned}$ b) Area of floor to be tiled $=75 \mathrm{~m}^{2}$ $\text { Area of one tile }=(0.6 \times 0.6) \mathrm{m}^{2}$ $=0.36 \mathrm{~m}^{2}$ The number tiles required $75 \div 0.36=\frac{7500}{36}=208.33$ The least number of tiles needed is 209. Note: The area of the work station is circular. Hence, parts of tiles will have to be used and the least number of tiles is difficult to determine. Also, part (b) asks for the room to be covered completely, which assumes that the work station is also to be covered. In this case, the least number of tiles can be calculated as shown: $\begin{aligned} \frac{\text { Area of room }}{\text { Area of } 1 \text { tile }} & =\frac{16 \times 16}{0.6 \times 0.6} \\ & =\frac{16 \times 16}{\frac{3}{5} \times \frac{3}{5}} \\ & =\frac{16 \times 16 \times 25}{9} \\ & =711.1 \end{aligned}$ That is, the least number of tiles needed is 712 .			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
45.	The shaded shape shown in the diagram below is moved from its position on the line through X to the new position (unshaded) on the line through Y. a) Describe the movement of the shaded shape to its new position (unshaded). Answer: A turn about the origin of $\mathbf{9 0}^{\circ}$ anti-clockwise OR 270^{0} clockwise turn 90° clockwise turn OR 270^{0} anticlockwise turn	a) The movement can be described in any one of the four ways. In each case, the movement is a rotation about the origin. An anti-clockwise turn of 90° OR a clockwise turn of 270°. A clockwise turn of 90° OR an anticlockwise turn of 270°.			

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
	b) The new position is combined with the original position to form a new shape. How many lines of symmetry does the new shape have? Answer: 4 lines c) The combined shape is the net of a solid. What is the name of this solid? Answer: Square based pyramid	b) The new figure has 4 lines of symmetry. c) By folding the four triangles, (labelled 1 to 4) along their bases so that A, B, C and D touch, a square based pyramid is formed.			

FAS-PASS
Maths

