No.	TEST ITEMS	WORKING COLUMN						Do Not Write Here		
								KC	AT	PS
1.	$\begin{array}{r} 7469 \\ -2361 \\ \hline \text { Answer } 5108 \end{array}$	$\begin{array}{r} \mathrm{T} \\ 74 \\ -23 \\ \hline 51 \end{array}$	$\begin{array}{ll} 1 & \mathrm{t} \\ 6 & 9 \\ 6 & 1 \\ \hline 0 & 8 \\ \hline \end{array}$							
2.	Write in figures: Two hundred and five thousand and seventy-three. Answer: 205073	Two hundred and five thousand 205000 Seventy-three								
3.	State the VALUE of the underlined digit in the following numeral. $75 \underline{\mathbf{3}} 291$ Answer: Three thousand ($\mathbf{3} \mathbf{0 0 0)}$	7 Hundre dis or dhousai ds	$\begin{array}{\|c\|} \hline 5 \\ \hline \begin{array}{c} \text { Tens of } \\ \text { thousan } \\ \text { ds } \mathrm{s} \end{array} \\ \hline \end{array}$	$\substack{\text { Thuousa } \\ \text { nds }}$	$\begin{array}{\|l\|} \hline \\ \hline \end{array}$	$\begin{array}{\|r\|} 9 \\ \hline \text { Tens } \end{array}$	Ones			
4.	Write the number in the box that CORRECTLY completes the following sentence. $\begin{aligned} & \frac{1}{12} \times \square=20 \\ & \frac{1}{12} \times 240=20 \end{aligned}$ Answer: 240	The whole number is $20 \times 12=240$ OR $\begin{aligned} \frac{1}{12} \times \square & =20 \\ \square & =20 \div \frac{1}{12} \\ & =\frac{20}{1} \div \frac{1}{12} \\ & =\frac{20}{1} \times \frac{12}{1} \\ & =240 \end{aligned}$								

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
8.	Complete the following number sequence. $4,9,15,22,30,39$ \qquad Answer: 49 $4,9,15,22,30,39,49$	$\begin{aligned} & 4_{4+5=9} \\ & 9_{9+6=15} \\ & 15_{15+7}=22 \\ & 22_{22+8=30} \\ & 30_{30+9=39} \\ & 39_{39+10=49} \\ & 49^{2} \end{aligned}$ Therefore, the next number in the sequence is 49 .			
9.	Write the time shown on Clock A, in digital notation, on Clock B. Answer: Clock B $3: 40$	The hour or shorter hand is between 3 and 4. This means the hour is after 3 o'clock but not yet 4 o'clock. The number of minutes between each number is 5 . The minute or longer hand points to the number 8. Therefore, $8 \times 5=40$ minutes have passed since 3 o'clock. Therefore, the time is 3:40 in digital notation.			
10.	Convert 2.369 kilometres to metres. Answer: 2369	$\begin{aligned} & 1 \text { kilometre }=1000 \text { metres } \\ & \text { Therefore, } \begin{aligned} 2.369 & =2.369 \times 1000 \\ & =2369 \text { metres } \end{aligned} \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
11.	What is the length of the pencil to the NEAREST centimetre? Answer: $\mathbf{3} \mathbf{c m}$	The point of the pencil is a little to the left of the 2.5 cm mark. The other end of the pencil is about where the 5.5 cm mark appears to be. The pencil is a little bit longer than $5.5-3.5=3.0 \mathrm{~cm}$ and so the length of the pencil is equal to 3 cm to the nearest centimetre.			
12.	Chad buys a bag of oranges for $\$ 9.50$. How much change should he get if he pays with a $\$ 20.00$ bill? Answer: \$10.50	The cost of the bag of oranges $=\$ 9.50$ The amount that is used for payment $=\$ 20.00$ Therefore, the change is $\$ 20.00-\$ 9.50$ $\begin{array}{r} 20.00 \\ -\quad 9.50 \\ \hline 10.50 \\ \hline \end{array}$ The change is $\$ 10.50$			
13.	$\begin{array}{rc} \mathbf{k g} & \mathbf{g} \\ 6 & 763 \\ +\quad 3 & 286 \\ \hline \end{array}$ Answer : \qquad				

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
16.	What is the name of the solid shape that can be made with the following net? Answer: Triangular prism OR tetrahedron	If we fold A along side $1, \mathrm{~B}$ along side 2 and C along side 3 , so that A, B and C touch we should form a triangular prism. The triangular prism has four faces that are identical, it is also called a tetrahedron.			
17.	How many lines of symmetry are there in the following shaded shape? Answer: 4 lines	There are 4 lines of symmetry in the given shape.			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
18.	Tyson is facing West and makes THREE $\frac{1}{4}$-turns in a clockwise direction. In which direction will Tyson now be facing? Answer: South (S)	 Tyson is facing West. $\mathrm{w} \longleftarrow \longleftrightarrow \cdot T y s o n$ After $1^{\text {st }} \frac{1}{4}$ turn clockwise: After $2^{\text {nd }} \frac{1}{4}$ turn clockwise: After $3^{\text {rd }} \frac{1}{4}$ turn clockwise:			

SECTION II

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
21.	$2 \frac{7}{8}+4 \frac{1}{3}$ Answer: $7 \frac{5}{24}$	$2 \frac{7}{8}+4 \frac{1}{3}$ Adding the whole numbers: $2+4=6$ Adding the fractions: $\begin{aligned} & \frac{7}{8}+\frac{1}{3} \\ & \frac{7}{8} \times \frac{3}{3}=\frac{21}{24} \\ & \frac{1}{3} \times \frac{8}{8}=\frac{8}{24} \\ & \frac{7}{8}+\frac{1}{3}=\frac{21}{24}+\frac{8}{24} \\ &=\frac{21+8}{24} \\ &=\frac{29}{24} \\ &=\frac{24+5}{24} \\ &=1+\frac{5}{24} \end{aligned}$ Hence, $\begin{aligned} 2 \frac{7}{8}+4 \frac{1}{3} & =6+1+\frac{5}{24} \\ & =7 \frac{5}{24} \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
22.	Maria has 413 stamps. Her brother has 49 stamps fewer than she has. How many stamps do they have ALTOGETHER? Answer: 777	Maria has 413 stamps. Brother has 49 fewer stamps. Therefore, her brother has $413-49=364$ stamps. $\begin{array}{r} 413- \\ \frac{49}{364} \\ \hline \end{array}$ Together Maria and her brother have $413+$ 364 stamps. $\begin{aligned} & 413+ \\ & 364 \\ & \hline 777 \\ & \hline \end{aligned}$			
23.	The following diagram shows a wall that is to be covered with identical square tiles. The shaded area is already tiled. Express the area of the tiled portion as a decimal fraction of the area of the entire wall. Answer: 0.25	 The wall consists of 4 rows each with 6 equal squares $=4 \times 6=24$ squares. The number of squares that are covered $=4+2=6$ The area of the tiled portion covered as a fraction of the entire wall $=\frac{6}{24}=\frac{1}{4}$ $\begin{aligned} & 0.25 \\ & 4 \longdiv { 1 0 } \\ & -\quad 8 \\ & \hline 20 \\ & \hline \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
24.	Express as a SINGLE decimal fraction: $\frac{5}{100}+\frac{3}{10}$ Answer: 0.35	$\begin{aligned} \frac{5}{100}+\frac{3}{10} & =\frac{5}{100}+\frac{3 \times 10}{10 \times 10} \\ & =\frac{5}{100}+\frac{30}{100} \\ & =\frac{5+30}{100} \\ & =\frac{35}{100} \\ & =0.35 \end{aligned}$			
25.	Jerry has 40 stickers that are either red, yellow or blue in colour. There are 24 red ones and equal numbers of blue and yellow. Calculate the percentage of his stickers that are yellow. Answer: 20\%	Total number of stickers $=40$ The number of red stickers $=24$ Therefore, the number of blue stickers and yellow stickers $=40-24=16$ 40 - 24 16 The number of yellow stickers is the same as the number of blue stickers $=16 \div 2=8$ The number of yellow stickers $=8$ Percentage of yellow stickers $\begin{aligned} & =\frac{\text { No. of yellow stickers }}{\text { Total no. of stickers }} \times 100 \\ & =\frac{8}{40} \times 100 \\ & =20 \% \end{aligned}$			

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
26.	Sasha used 55% of her savings to buy a game. She has $\$ 135$ remaining. How much was her savings before buying the game? Answer: \$300	Sasha uses 55% of her savings to buy a game. $\begin{aligned} \text { The percentage remaining } & =100-55 \\ & =45 \% \end{aligned}$ Remaining money $=\$ 135$ Therefore, 45% of her savings is $\$ 135$. $\begin{aligned} 1 \% & =\frac{\$ 135}{45} & & \\ & =\$ 3 & & \text { Savings before } \\ 100 \% & =\$ 3 \times 100 & & \text { buying the } \\ & =\$ 300 & & \text { game is } 100 \% . \end{aligned}$ Therefore total savings is $\$ 300$			
27.	Brian and his father went fishing on the weekend (Saturday and Sunday). They caught 120 fishes on Saturday. Their catch decreased by 25% on Sunday. a) Calculate the number of fishes they caught on Sunday. Answer: 90 fishes b) How many fishes did they catch ALTOGETHER on the weekend? Answer: 210 fishes	a) The number of fishes caught on Saturday $=120$ The catch decreased by 25% on Sunday. $\begin{aligned} 25 \% \text { of } 120 \text { fishes } & =\frac{25}{100} \times 120 \\ & =30 \end{aligned}$ So, the number of fishes caught on Sunday $=120-30=90$ fishes 120 - $\begin{aligned} & 30 \\ & \hline 90 \\ & \hline \end{aligned}$ Or Catch decreased by 25%. So, the catch on Sunday $=(100-25) \%$ of the catch on Saturday $=75 \%$ of 120 fishes $=\frac{75}{100} \times 120$ $=90$ fishes b) The total number of fishes caught over the two day period $=120+90=210$ fishes			

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
30.	The following diagram shows a rectangular box with dimensions $6 \mathrm{~cm} \times 9 \mathrm{~cm} \times 18 \mathrm{~cm}$ and a small cube with sides 3 cm . How many small cubes are needed to completely fill the rectangular box? Answer: 36 cubes	The dimensions of the rectangular box $=6 \mathrm{~cm} \times 9 \mathrm{~cm} \times 18 \mathrm{~cm}$ The dimensions of the cube $=3 \mathrm{~cm} \times 3 \mathrm{~cm} \times 3 \mathrm{~cm}$ The number of cubes that are needed to completely fill the box $\begin{aligned} & =\frac{6 \times 9 \times 18}{3 \times 3 \times 3} \\ & =2 \times 3 \times 6 \\ & =36 \text { cubes } \end{aligned}$			
31.	Calculate the area of the following shape. Answer: $\mathbf{1 2 0} \mathbf{c m}^{2}$	The compound shape is divided into two simpler shapes, A and B, as shown. Rectangle A has dimensions 10 cm by 9 cm Rectangle B has dimensions 5 cm by 6 cm Area of rectangle $A=9 \times 10=90 \mathrm{~cm}^{2}$ Area of rectangle $B=5 \times 6=30 \mathrm{~cm}^{2}$ Total area of the entire shape $\begin{aligned} & =\text { Area of } A+\text { Area of } B \\ & =90+30 \\ & =120 \mathrm{~cm}^{2} \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
		The compound shape is divided into two simpler shapes, P and Q, as shown. Rectangle P has dimensions 10 cm by 3 cm Rectangle Q has dimensions 15 cm by 6 cm Area of $P=3 \times 10=30 \mathrm{~cm}^{2}$ Area of $Q=15 \times 6=90 \mathrm{~cm}^{2}$ Total area of the entire shape $=$ Area of $P+$ Area of Q $=30+90$ $=120 \mathrm{~cm}^{2}$ OR The region S is added to complete a larger rectangle measuring 15 cm by 9 cm . The area of the shape $=$ Area of the larger rectangle - Area of rectangle S $\begin{aligned} & =(15 \times 9) \mathrm{cm}^{2}-(5 \times 3) \mathrm{cm}^{2} \\ & =(135-15) \mathrm{cm}^{2} \\ & =120 \mathrm{~cm}^{2} \end{aligned}$			
32.	Mrs. Chin got a loan of $\$ 6000$ from a credit union. She took 3 years to repay the loan at the simple interest rate of 5% per annum. Calculate the TOTAL amount of money that Mrs. Chin repaid. Answer: \$6 900	$\begin{aligned} & \text { The amount of the loan }=\$ 6000 \text { (Principal) } \\ & \text { Time of repayment }=3 \text { years (Time) } \\ & \text { Simple interest rate }=5 \% \text { per annum (Rate) } \\ & \begin{aligned} \text { Simple Interest } & =\frac{\text { Principal Rate Time }}{100} \\ & =\frac{\$ 6000 \times 5 \times 3}{100} \\ & =\$ 900 \end{aligned} \end{aligned}$ The total amount repaid $=$ Principal + Simple interest $=\$ 6000+\$ 900$ $=\$ 6900$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
33.	In the following shape, ABCD , the sides $A B$ and $B C$ are both equal to 130 cm , and sides AD and $C D$ are equal in length. The perimeter of the shape is 660 cm . Calculate the length of the side CD. Answer: CD = 200 cm	$\mathrm{AB}=\mathrm{BC}=130 \mathrm{~cm}$ The length of $A B+$ the length of $B C$ $\begin{aligned} & =(130+130) \mathrm{cm} \\ & =260 \mathrm{~cm} \end{aligned}$ The perimeter of the shape $=660 \mathrm{~cm}$ Therefore, the length of CD + length of DA $\begin{aligned} & =(660-260) \mathrm{cm} \\ & =400 \mathrm{~cm} \end{aligned}$ Now, CD = DA Therefore, the length of $\mathrm{CD}=\frac{1}{2}(400) \mathrm{cm}$ $=200 \mathrm{~cm}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
34.	The side of each square on the following grid is 3 cm . Complete EACH of the following statements. a) The area of ONE square on the grid is \qquad cm^{2}. b) The TOTAL shaded area on the grid is \qquad cm^{2}. Answer: a) The area of ONE square on the grid is 9 $\mathbf{c m}^{2}$. b) The TOTAL shaded area on the grid is $58 \frac{1}{2}$ cm^{2}.	a) Length of each square on the grid $=$ 3 cm . Therefore, the area of one square on the grid $=(3 \times 3) \mathrm{cm}^{2}$ $=9 \mathrm{~cm}^{2}$ b) The shaded area consists of 4 whole squares and 5 triangles. Each triangle is one half of the area of the square. Therefore, the area of one triangle $\begin{aligned} & =\frac{3 \times 3}{2} \mathrm{~cm}^{2} \\ & =4 \frac{1}{2} \mathrm{~cm}^{2} \end{aligned}$ The shaded area comprises 4 whole squares and 5 half squares The total area of the shaded region $\begin{aligned} & =(4 \times 9)+\left(5 \times 4 \frac{1}{2}\right) \mathrm{cm}^{2} \\ & =36+\left(5 \times \frac{9}{2}\right) \mathrm{cm}^{2} \\ & =\left(36+22 \frac{1}{2}\right) \mathrm{cm}^{2} \\ & =58 \frac{1}{2} \mathrm{~cm}^{2} \end{aligned}$ OR We can choose to join two triangles to form a square and count the number of shaded squares in the diagram. Number of shaded squares $=6 \frac{1}{2}$ or $\frac{13}{2}$ Area of one square $=9 \mathrm{~cm}^{2}$ Area of $6 \frac{1}{2}$ squares $=9 \times 6 \frac{1}{2}=9 \times \frac{13}{2}=\frac{117}{2}=58 \frac{1}{2} \mathrm{~cm}^{2}$			

FAS-PASS
Maths

		WORKING COLUMN				Do Not Write Here		
						KC	AT	PS

FAS-PASS Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
38.	Three triangles, P, Q and R , are shown below. a) Which of the following triangles is equilateral? Answer: R b) Which of the triangles have AT LEAST ONE line of symmetry? Answer: P and R	a) In triangle P , only two sides are equal. Triangle P is isosceles. In triangle Q , all the sides are of unequal length. Triangle Q is scalene. In triangle R, all the sides are of equal length. Triangle, R is equilateral. b) Triangle $\mathrm{P}-1$ line of symmetry Triangle Q - No lines of symmetry Triangle $\mathrm{R}-3$ lines of symmetry Triangles that have at least one line of symmetry can have one or more than one line of symmetry. Therefore, triangles P and R would meet these requirements.			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
39.	The following diagram shows a flat shaded shape, ABCD. a) Circle the word from the following list which BEST describes the angle at C . Acute Right-angled Obtuse Reflex Answer: a) Acute Right-angled Obtuse Reflex b) On the diagram of ABCD , tick (\checkmark) the TWO sides which are PARALLEL to each other.	a) Angles A and B are right angles. Angle B is greater than 90° and is obtuse. The angle at C is less than 90°. Hence, it is acute. Note: All of the three other suggestions are clearly incorrect. Hence, there is NO BEST answer. There is only one answer and so the word 'best' should not be used. b) The sides AB and DC are parallel to each other.			

FAS-PASS
Maths

	TEST ITEMS	WORKING COLUMN		Do Not Write Here		
				KC	AT	PS

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
44.	The following diagram shows the number of long mats (L) and short mats (S) arranged around a rectangular playing field. The length and width, in metres, of each type of rectangular mat are shown below. Calculate: a) The length of the playing field. Answer: 12 m b) The width of the playing field. Answer: 6 m c) The area of a short mat. Answer: 1 m² d) The number of short mats that would be needed to cover the area of the playing COMPLETELY. Answer: 72 short mats	a) The length of the playing field is ' 3 times' the length of a long mat (L). $\begin{gathered} =3 \times 4 \mathrm{~m} \\ =12 \mathrm{~m} \end{gathered}$ b) The width of the playing field is 3 times the length of a short mat (S). $\begin{gathered} =3 \times 2 \mathrm{~m} \\ =6 \mathrm{~m} \end{gathered}$ c) The area of short mat (S) $\begin{aligned} & =(2 \times 0.5) \mathrm{m}^{2} \\ & =1 \mathrm{~m}^{2} \end{aligned}$ d) The area of the playing field $\begin{aligned} & =\text { Length } \times \text { Width } \\ & =(12 \times 6) \mathrm{m}^{2} \\ & =72 \mathrm{~m}^{2} \end{aligned}$ Therefore, the number of short mats needed to cover the playing field $=\frac{\text { Area of the playing field }}{\text { Area of a short mat }}$ $\begin{aligned} & =\frac{72 \mathrm{~m}^{2}}{1 \mathrm{~m}^{2}} \\ & =72 \text { short mats } \end{aligned}$			

FAS-PASS Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
	Answer: 34 chairs c) What is the mean number of chairs rented over that period in May? Answer: 558 chairs	Therefore, the number of chairs that were returned on Tuesday and Thursday altogether $\begin{aligned} & =306-204 \\ & =102 \end{aligned}$ 306 - 204 102 Twice as many chairs were returned on Tuesday as were returned on Thursday. Therefore, the number returned on Tuesday: $\begin{aligned} & =\frac{102}{2+1} \\ & =\frac{102}{3} \\ & =34 \end{aligned}$ c) The mean number of chairs rented $\begin{aligned} & =\frac{\text { No. of chairs rented }}{\text { No. of days }} \\ & =\frac{113+367+258+969+1083}{5} \\ & =\frac{2790}{5} \\ & =558 \text { chairs per day } \end{aligned}$			

END OF TEST

