FAS-PASS
Maths

SEA MATHEMATICS 2014

SECTION I

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
1.		$\begin{array}{r} 3 / 417 \\ -\quad 392 \\ \hline 25 \\ \hline \end{array}$			
2.	Write 3.49 to the NEAREST TENTH. Answer $=3.5$				
3.	A pizza was cut into 12 equal slices, as shown below. Shade $\frac{1}{3}$ of the pizza.	The number of equal slices is 12 . $\begin{aligned} \frac{1}{3} \text { of the pizza } & =\frac{1}{3}(12) \\ & =4 \text { slices } \end{aligned}$ We may shade a total of ANY 4 slices.			

No.	TEST ITEMS	WORKING COLUMN	$\begin{gathered} \hline \text { Do Not Write } \\ \text { Here } \\ \hline \end{gathered}$		
			KC	AT	PS
4.	Write ONE of the following symbols in the box below so that the number sentence is correct. $\frac{3}{4} \square \frac{7}{12}$	To compare the two fractions it would be best for them to be expressed with the same denominator. $\begin{aligned} \frac{3}{4} & =\frac{3}{4} \times \frac{3}{3} \\ & =\frac{9}{12} \end{aligned}$ \therefore We compare $\frac{9}{12}$ and $\frac{7}{12}$ by looking at their numerators. 9 is greater than 7 . $\therefore \frac{9}{12}$ is a larger fraction than $\frac{7}{12}$ $\frac{9}{12}>\frac{7}{12}$ and so, $\frac{3}{4}>\frac{7}{12}$.			
5.	A piece of ribbon is $\frac{7}{10} \mathrm{~m}$ long. A piece measuring $\frac{2}{5} \mathrm{~m}$ is cut off. What is the length, in metres, of the remaining piece? Answer $=\frac{3}{10} \mathbf{m}$	Uncut ribbon $\frac{7}{10} \mathrm{~m}$ Cut off $\frac{2}{5} \mathrm{~m}$ Remaining piece \square The length of the remaining piece of ribbon $=$ The length of the uncut ribbon - The length of the piece that was cut off $\begin{array}{ll} =\frac{7}{10}-\frac{2}{5} & \\ =\frac{7}{10}-\frac{7}{5} \\ =\frac{7}{10} & \text { OR } \\ =\frac{7-4}{10} & \\ =\frac{1(7)-2(2)}{10} \mathrm{~m} & \\ 10 & \\ =\frac{7-4}{10} \mathrm{~m} \end{array}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
11.	The length of a carrot is measured below. What is its length to the NEAREST centimetre? Answer $=5 \mathrm{~cm}$	The end of the carrot (indicated by the blue line) lies before the halfway mark (shown red) between 5 cm and 6 cm . Hence, the length of the carrot is 5 cm , when measured to the nearest cm .			
12.	A square sheet of paper has sides of 11 cm . What is its area? Answer $=121 \mathbf{c m}^{2}$	11 cm Square sheet of paper Area of the square sheet of paper $\begin{gathered} =11 \mathrm{~cm} \times 11 \mathrm{~cm} \\ =121 \mathrm{~cm}^{2} \end{gathered}$			
13.	Shari has 4 coins on her desk. They have a total value of 50ϕ. The value of two coins is shown in the diagram below. Write the correct value on EACH of the other 2 coins. Answer $=$ One 10 c and One 25d as shown in red	The total value of all 4 coins in 50ϕ. We are shown: 1 coin with a value of 10ϕ and 1 coin with a value of 5ϕ. The value of these two coins together $=10 \phi+5 \phi=15 \phi$ Hence, the value of the remaining two coins $=50 \phi-15 \phi=35 \phi$ Coins are made in the values of $1 \phi, 5 \phi, 10 \phi$, 25ϕ and 50ϕ. Two coins must have a total value of 35ϕ. Therefore, they must be one 10ϕ and one 25ϕ.			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
16.	The triangle below has ONLY two sides of equal length. What type of triangle is it? Answer: Isosceles	A triangle with only two equal sides is called isosceles. Such a triangle may also be identified by having only two equal angles.			
17.	Complete the drawing below to show the net of a triangular-based prism. Answer:	The incomplete net of a triangular - based prism given is The prism would have three (3) equal rectangular faces and two (2) equal triangular faces. Hence, the completed net would look like: When folded the solid figure would look like:			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
18.	Sunil changes the position of the arrow on the circular dial shown below. He makes a quarter turn ANTI-CLOCKWISE. which number is the arrow now pointing? Answer $=7$	A whole turn is 360° The dial is divided into 8 equal parts. Therefore, each angle is $360^{\circ} \div 8=45^{\circ}$ $\frac{1}{4} \text { turn }=\frac{360^{\circ}}{4}=90^{\circ}$ The dial is turned about 90° in an anticlockwise direction. Therefore, the dial will now point to the number 7.			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
19.	Cookies were packaged in three bags as shown below. What is the mean number of cookies in a bag? Answer = 11 cookies	Mean number of cookies in a bag $\begin{aligned} & =\frac{\text { Total no. of cookies in all bags }}{\text { No. of bags }} \\ & =\frac{15+8+10}{3} \\ & =\frac{33}{3} \\ & =11 \text { cookies } \end{aligned}$			
20.	The graph below shows the number of haircuts a barber did on five days of a particular week. The total number of haircuts done in the five days is 75 . How many haircuts were done by the barber on Monday? Answer $=5$ haircuts	The graph showing the number of haircuts performed by the barber over the 5 - day period is shown as a pictograph. That is, each picture, (c), represents a certain number of haircuts. The total number of pictures (faces) over the 5 days is $1+4+2+2+6=15$. Hence, 15 faces () represent 75 haircuts. So, 1 face represents $\frac{75}{15}=5$ haircuts. Hence, the number of haircuts done on Monday $=5 \times 1=5$.			

FAS-PASS
Maths

SECTION II

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
21.	$5 \frac{1}{2}-2 \frac{5}{8}=$ $\text { Answer }=2 \frac{7}{8}$	$\begin{aligned} 5 \frac{1}{2}-2 \frac{5}{8} & =5 \frac{4}{8}-2 \frac{5}{8} \quad\left[\frac{1}{2}=\frac{4}{8}\right] \\ & =\frac{44}{8}-\frac{21}{8} \\ & =\frac{44-21}{8} \\ = & \frac{23}{8} \\ & =2 \frac{7}{8} \end{aligned} \begin{aligned} & \text { OR } \\ & 5 \frac{1}{2}-2 \frac{5}{8}=5 \frac{4}{8}-2 \frac{5}{8} \\ &=4 \frac{12}{8}-2 \frac{5}{8} \\ &=2 \frac{7}{8} \end{aligned}$			
22.	Simplify, using decimal notation: $7+\frac{5}{10}+\frac{3}{100}$ Answer $=7.53$	Ones Tenths Hundredths 7 5 3$\left\{\begin{array}{rr} 7+\frac{5}{10}+\frac{3}{100} & \\ =7+0.5+.03= & 7.00 \\ & +0.50 \\ & \underline{0.03} \\ & 7.53 \end{array}\right.$			

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
23.	Carrie had $\$ 60$ as an allowance for the week. She spent $\frac{2}{5}$ of it on snacks, $\frac{1}{4}$ of it on stickers and saved the remainder. a) What fraction did she spend on snacks and stickers together? Answer $=\frac{13}{20}$ b) How much money did she save? Answer $=\mathbf{\$ 2 1}$	Total allowance $=\$ 60$ Fraction of allowance spent on snacks $=\frac{2}{5}$ Fraction of allowance spent on stickers $=\frac{1}{4}$ a) Fraction spent on both snacks and stickers $\begin{aligned} & =\frac{2}{5}+\frac{1}{4}\left[\frac{2}{5}=\frac{8}{20} \text { and } \frac{1}{4}=\frac{5}{20}\right] \\ & =\frac{8}{20}+\frac{5}{20} \\ & =\frac{8+5}{20} \\ & =\frac{13}{20} \end{aligned}$ b) Fraction of Carrie's allowance saved $\begin{aligned} & =1-\frac{13}{20} \\ & =\frac{20}{20}-\frac{13}{20} \\ & =\frac{20-13}{20} \\ & =\frac{7}{20} \end{aligned}$ The amount of money saved $\begin{aligned} & =\frac{7}{20} \times \$ 60 \\ & =\$ 21 \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
24.	In a car park, $\frac{3}{5}$ of the cars are blue and the remainder are white. What percentage of the cars are white? Answer $=\mathbf{4 0 \%}$	The fraction of cars that are blue $=\frac{3}{5}$ Therefore, the fraction of cars that are white $\begin{aligned} & =1-\frac{3}{5} \\ & =\frac{5}{5}-\frac{3}{5} \\ & =\frac{5-3}{5} \\ & =\frac{2}{5} \end{aligned}$ Hence, the percentage of cars that are white $\begin{aligned} & =\frac{2}{5} \times 100 \\ & =40 \% \end{aligned}$ OR Fraction of cars that are blue $=\frac{3}{5}$ Hence, the percentage of cars that are blue $\begin{aligned} & =\frac{3}{5} \times 100 \\ & =60 \% \end{aligned}$ Therefore, the percentage of cars that are white $\begin{aligned} & =100-60 \\ & =40 \% \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
25.	Alim collected seashells over the weekend. He collected 45 seashells on Saturday and three times as many on Sunday. a) How many seashells did Alim collect on Sunday? Answer $=135$ seashells b) What percentage of the seashells collected over the weekend did he collect on Saturday? Answer $=\mathbf{2 5 \%}$	Number of seashells collected on Saturday $=45$ a) Therefore, the number of seashells collected on Sunday $\begin{aligned} & =45 \times 3 \\ & =135 \text { seashells } \end{aligned}$ b) The total number of shells collected over the weekend $=$ The number of shells collected on Saturday + The number of shells collected on Sunday $\begin{aligned} & =45 \\ & +\underline{135} \\ & +180 \text { seashells } \end{aligned}$ The number of seashells collected on Saturday as a percentage of the number collected over the weekend No. of seashells $\begin{aligned} = & \frac{\text { collected on Saturday }}{\text { Total no. of seashells }} \times 100 \% \\ & \text { collected on both days } \\ = & \frac{45}{180} \times 100 \\ = & 25 \% \end{aligned}$			

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
28.	Five years ago, Paul was $\frac{3}{8}$ his father's age. Paul's father is now 37 years old. How old is Paul now? Answer $=17$ years	Paul's father is now 37 years old. Five years ago, Paul's father would have been $37-5=32$ years old. Therefore, Paul was $\frac{3}{8}$ of his father's age when his father was 32 . Paul's age at that time (5 years ago) would have been $\frac{3}{8} \times 32=12$ years. Now, five years after, Paul's age $\begin{aligned} & =12+5 \\ & =17 \text { years } \end{aligned}$			
29.	The volume of the cuboid shown below is $48 \mathrm{~cm}^{3}$. The length of the cuboid is 3 cm , the width is 2 cm and the height is $h \mathrm{~cm}$. Calculate the value of h. Answer $=8$	Volume of cuboid $=$ Length \times Width \times Height $=48 \mathrm{~cm}^{3}$ Hence, $\begin{aligned} 3 \times 2 \times h & =48 \\ 6 h & =48 \\ h & =48 \div 6 \\ h & =8 \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not WriteHere		
			KC	AT	PS
30.	Burns ran the following distances over a 2 - week period while training for the Olympics. What is the TOTAL distance covered by Burns over the 2 weeks? Answer $=6$ km 550 m or 6.55 m	Distance ran by Burns in week 1 $=3 \mathrm{~km} 800 \mathrm{~m}$ Distance ran by Burns in week 2 $=2.75 \mathrm{~km}$ $1 \mathrm{~km}=1000 \mathrm{~m}$ Therefore $0.75 \mathrm{~km}=0.75 \times 1000 \mathrm{~m}$ $=750 \mathrm{~m}$ Therefore, in week 2, Burns ran a distance of 2 km 750 m . The total distance ran by Burns, over the two-week period $=3 \mathrm{~km} 800 \mathrm{~m}+2 \mathrm{~km} 750 \mathrm{~m}$ $\begin{array}{rcc} \mathrm{km} & \mathrm{~m} & \\ \begin{array}{rl} +1 \\ 3 & 800 \\ + & 750 \\ \hline & \end{array} & \begin{array}{l} 800 \mathrm{~m} \\ \hline 650 \mathrm{~m} \\ \hline 6 \end{array} 550 \mathrm{~m} & \underline{1550 \mathrm{~m}}=1 \mathrm{~km} \mathrm{550m} \end{array}$			
31.	Mr. Lee borrowed $\$ 8000$ from the bank to buy a used car. He paid simple interest at a rate of 12% per year for a period of 3 years. How much simple interest did Mr. Lee pay? Answer = \$2 880	Simple Interest $\begin{aligned} & =\frac{\text { Principal } \times \text { Rate } \times \text { Time }}{100} \\ & =\frac{\$ 8000 \times 12 \times 3}{100} \\ & =\$ 2880 \end{aligned}$			

FAS-PASS
Maths

No.	TEST ITEMS
The diagram below shows a	
cycling track consisting of a	
rectangle and two semi-circles.	

A cyclist starts at point A and cycles in the direction of the arrows to point B . What distance did he cover? $\left(\pi=\frac{22}{7}\right)$

Answer $=277$ m

The points X and Y are named on the figure for convenience.
Since the arrow shows the direction of the cyclist from A to B, we can say the cyclist rides from A to X, X to Y and then Y to B.

From A to X is 100 m .

From X to Y is a semi-circle of diameter 49 m.

The distance from X to Y is one half the circumference of the circle
$=\frac{1}{2}($ Diameter $\times \pi)$
$=\frac{1}{2}\left(49 \times \frac{22}{7}\right)$
$=77 \mathrm{~m}$
From Y to B is 100 m .

Therefore the total distance covered by the cyclist
$=100+77+100$
$=277 \mathrm{~m}$

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	$\begin{array}{\|l} \hline \text { Do Not Write } \\ \text { Here } \end{array}$		
			KC	AT	PS
35.	The school cafeteria, bought 5 dozen silly bands at $\$ 15$ per dozen and sold them for $\$ 2$ EACH. a) What was the profit, in dollars, made by the school cafeteria? Answer $=\mathbf{\$ 4 5}$ b) Calculate the profit as a percentage of the cost price. Answer $=\mathbf{6 0 \%}$	a) The cost of one dozen silly bands = \$15 Therefore, the cost of 5 dozen silly bands $\begin{aligned} & =\$ 15 \times 5 \\ & =\$ 75 \end{aligned}$ The selling price of 1 silly band $=$ $\$ 2$. Hence, the selling price of all 5 dozen silly bands $\begin{aligned} & =5 \times 12 \times \$ 2 \\ & =\$ 120 \end{aligned}$ The profit made $=$ Selling price - Cost price $\begin{aligned} & =\$ 120-\$ 75 \\ & =\$ 45 \end{aligned}$ b) Profit as a percentage of the cost price $\begin{aligned} & =\frac{\text { Profit }}{\text { Cost price }} \times 100 \% \\ & =\frac{45}{75} \times 100 \% \\ & =60 \% \end{aligned}$			

FAS-PASS Maths

			WORKING COLUMN				Do Not Write Here			
								KC	AT	PS

FAS-PASS
Maths

FAS-PASS
Maths

		WORKING COLUMN		Do NotHere		
				KC	AT	PS

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not WriteHere		
			KC	AT	PS
39.	The shape $A B C D$ below is moved from its position at P to the position at Q so that Corner A is now at A^{\prime} and Corner D is now at D^{\prime}. a) What is the name of this movement? Answer: Reflection or flip. b) Describe the movement in (a) FULLY. Answer: $B C D^{\prime} A^{\prime}$ is a reflection of $B C D A$ in the line $B C$. c) Under the same movement in (a), describe what happens to Corner B ? Answer: Point B remained in the same place. We can say that B is an invariant point.	a) In the movement, B and C remain in the same position. $B C D^{\prime} A^{\prime}$ is the same size as $B C D A$. $B C$ is a line of symmetry. The movement is a reflection or a 'flip'. b) $B C$ is the line of reflection. The shape $B C D A$ is reflected in the mirror line $B C$ to produce the image $B C D^{\prime} A^{\prime}$. c) The Corner or point B remained in the same place and did not move. In a reflection, points on the mirror line do not move or remain invariant. (The same can be said for point C).			

FAS-PASS
Maths

SECTION III

No.	TEST ITEMS	WORKING COLUMN	Do Here Wot		
			KC	AT	PS
41.	A fruit vendor has 160 fruits in his stall. Of these, $\frac{3}{8}$ are mangoes and 20% are plums. The remainder is avocados. a) How many mangoes does he have? Answer $=\mathbf{6 0}$ mangoes b) Express the number of fruits that are plums as a DECIMAL fraction. Answer $=0.2$ c) Calculate the number of avocados in his stall. Answer $=68$ avocados	a) Total number of fruits $=160$ $\frac{3}{8}$ of the fruits are mangoes. Therefore the number of mangoes $\begin{aligned} & =\frac{3}{8} \times 160 \\ & =60 \mathrm{mangoes} \end{aligned}$ b) 20% of the fruits are plums. To express 20% as a decimal: $20 \% \equiv \frac{20}{100}=\frac{2}{10}=0.2$ The number of fruits that is plums as a decimal fraction, is 0.2 . c) The number of plums is $\begin{aligned} & =20 \% \text { of } 160 \\ & =\frac{20}{100} \times 160 \\ & =32 \end{aligned}$ Besides mangoes and plums, the remainder of fruits is avocados. Therefore, the number of avocados $=$ No. of fruits - (No. of mangoes + No. of plums) $\begin{aligned} & =160-(60+32) \\ & =68 \text { avocados } \end{aligned}$			

FAS-PASS
Maths

		WORKING COLUMN		Do NotHere		
				KC	AT	PS

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Here		
			KC	AT	PS
44.	Lance's weekly wage is calculated using the rates in the table below. Lance works for 8 hours daily. a) During one week, Lance worked on Monday, Wednesday, Friday and Saturday. How many hours did Lance work during that week? Answer = $\mathbf{3 2}$ hours b) Using the rates in the table above, calculate Lance's wage for that week. Answer $=\mathbf{\$ 3 6 0}$ c) Lance's wage last week was $\$ 400$. He worked on Saturday and Sunday. How many HOURS did he work from Monday to Friday? Answer = 16 hours	a) Lance works for 8 hours per day. Lance worked Monday, Wednesday, Friday and Saturday (a total of 4 days). Hence, the number of hours that Lance worked $\begin{aligned} & =8 \times 4 \\ & =32 \text { hours } \end{aligned}$ b) Lance worked for 8 hours per day for 3 days, at the rate of $\$ 10$ per hour Lance's wage for Monday, Wednesday, Friday $\begin{aligned} & =(8 \times \$ 10) \times 3 \\ & =\$ 240 \end{aligned}$ Lance worked for 8 hours on Saturday, at the rate of $\$ 15$ per day. Lance's wage for Saturday $\begin{aligned} & =8 \times \$ 15 \\ & =\$ 120 \end{aligned}$ Lance's wage for that week $\begin{aligned} & =\$ 240 \\ & +\frac{\$ 120}{\$ 360} \end{aligned}$ c) When Lance works on both Saturday and Sunday, he is paid $(\$ 15 \times 8) \times 2=\$ 240$ Lance's total pay is $\$ 400$. Hence, Lance's pay for working Monday to Friday $\begin{aligned} & =\$ 400-\$ 240 \\ & =\$ 160 \end{aligned}$ At the rate of $\$ 10$ per hour, the number of hours worked would have been $\begin{aligned} & =\frac{\$ 160}{\$ 10} \\ & =16 \text { hours } \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN			
			KC	AT	PS
45.	Four points A, B, C and D are equally spaced around the edge of a circular spinner and connected to the centre O as shown in the diagram below. a) Raj turns the spinner so that A moves in an anticlockwise direction to the position of B. What was the size of the angle through which the spinner moved? Answer $=90^{\circ}$ (anti-clockwise) b) Describe FULLY how Raj can turn the spinner so that B moves to the position of D. Answer: $\mathbf{1 8 0}^{\circ}$ clockwise OR anti-clockwise	a) A moves anti-clockwise to B. New position The spinner moved through $\frac{1}{4}$ of a turn. $\begin{aligned} & =\frac{1}{4}\left(360^{\circ}\right) \\ & =90^{\circ} \text { anti-clockwise } \end{aligned}$ b) For B to move to D (which is opposite) the spinner must be moved through $\frac{1}{2}$ a turn. The angle of turn is 180°. The direction of turn can be either clockwise or anti-clockwise (counter clockwise).			

FAS-PASS
Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not WriteHere		
			KC	AT	PS
46.	The incomplete bar graph below shows the favourite subjects of the 30 pupils in a Standard 5 class. a) How many more pupils favour Social Studies than Maths? Answer $=4$ pupils b) What percentage of the class chose Maths as their favourite subject? Answer = 10\% c) How many pupils chose English as their favourite subject? Answer $=\mathbf{6}$ pupils d) Complete the graph on page 30 by drawing the bar to represent the number of pupils whose favourite subject is English.	a) The number of pupils who favour Social Studies $=7$ The number of pupils who favour Maths $=3$ Hence, $7-3=4$ more pupils favour Social Studies than Maths b) The total number of pupils in the class $=30$ Percentage of pupils who favour Maths No. of pupils who $\begin{gathered} =\frac{\text { favour Maths }}{\begin{array}{c} \text { Total no. of } \\ \text { pupils } \end{array}} \\ =\frac{3}{30} \times 100 \% \\ =10 \% \end{gathered}$ c) From the bar graph, there is no bar drawn, showing the number of pupils who favour English. Number of pupils who favour English $=$ (Number of students in the class) - (Number of students who favour the remaining subjects) $\begin{aligned} & =30-(7+3+4+10) \\ & =30-24 \\ & =6 \end{aligned}$ d) The completed bar graph showing the number of students who favour English will be:			

