SEA MATHS 2013

SECTION 1

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
8.	A netball team played 16 games. The team lost 3 games, drew 1 and won the others. What percentage of games did they win? Answer: 75\%	The number of games played $=16$ The number of games lost $=3$ The number of games drawn $=1$ The remainder of the games was won. Therefore, the number of games that was won $=16-(3+1)=16-4=12$ The percentage of the games that was won $\begin{aligned} & =\frac{\text { Number of games won }}{\text { Number of games played }} \times 100 \\ & =\frac{12}{16} \times 100 \\ & =75 \% \end{aligned}$			
9.	Amy has the coins shown in the diagram below. What is the TOTAL value of all the coins? Answer: \$1.15	The coins shown in the diagram consists of 3 of $25 \phi, 3$ of 10ϕ and 2 of 5ϕ. The value of 3 of 25ϕ coins $=25 \phi \times 3=75 \phi$ The value of 3 of $10 ¢$ coins $=10 \phi \times 3=30 \phi$ The value of 2 of 5ϕ coins $=5 \phi \times 2=10 \phi$ Hence, the total value of the coins listed in the diagram $=$ $\begin{gathered} 75 \phi \\ 30 \phi+ \\ \underline{10 \phi} \\ \underline{115 \phi} \end{gathered}$			
10.	5.08 kilometres $=$ \qquad metres Answer 5.08 kilometres $=\mathbf{5 0 8 0}$ metres	1 kilometre $=1000$ metres Therefore, 5.08 kilometres, expressed in metres, is $\begin{aligned} & =5.08 \times 1000 \text { metres } \\ & =5080 \text { metres } \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
11.	Allan sets out to run three laps without stopping. He starts at 10:15 a.m. and each lap takes 15 minutes. At what time does he finish? Answer: 11:00 a.m.	Each lap takes 15 minutes. Therefore 3 laps will take a total of $15 \times 3=45$ minutes The start time $=10: 15$ a.m. Therefore, the end time will be $\begin{aligned} & 10: 15+ \\ & \underline{00: 45} \\ & \underline{11: 00} \end{aligned}$ Allan finishes the laps at 11:00 a.m.			
12.	A bag of flour weighs 4.1 kg and a bag of corn meal weighs 3985 g . By how much is one bag heavier than the other? Answer: 115 g	The weight of the bag of flour $=4.1 \mathrm{~kg}$ $\begin{aligned} & =4.1 \times 1000 \mathrm{~g} \quad(1 \mathrm{~kg}=1000 \mathrm{~g}) \\ & =4100 \mathrm{~g} \end{aligned}$ The weight of the bag of corn meal $=3985 \mathrm{~g}$ 4100 is a larger number than 3985. The difference in weight between the bag of flour and the bag of corn meal, in g is, $4100-3985=115$ The difference in weight is 115 g , with the bag of flour being the heavier one.			
13.	How many pieces of string 25 cm long can be cut from a piece of string of length 2 m ? Answer: 8 pieces	The length of the original piece of string $=$ 2 m Therefore, the length of the original piece of string, in cm, is $=2 \times 100 \mathrm{~cm}=200 \mathrm{~cm}(1 \mathrm{~m}=100 \mathrm{~cm})$ The length of each smaller piece of string that is to be cut $=25 \mathrm{~cm}$. Hence, the number of smaller pieces that can be cut from the length is $\begin{aligned} & =\frac{\text { Length of the original piece of string }}{\text { Length of each small piece }} \\ & =\frac{200}{25} \\ & =8 \text { pieces } \end{aligned}$			

SECTION II

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
21.	Ian doubles a certain number and then adds 6 . The result is 24 . What is the number? Answer: 9	To find the number we start with the answer and work backwards reversing the operations along the way. To get 24, Ian added 6 to some number. So, $24=$? +6 , hence, we subtract 6 from 24 to get $24-6=18$. Hence, the number was 18 before. But Ian doubled (multiplied by 2) some number to get 18 So, $18=? \times 2$ Hence, we divide 18 by 2 to get $18 \div 2=9$ The original number is therefore, 9 .			
22.	Susan had gained 20 points for being neat and tidy. On Friday, she lost 10% of these points for untidy work. How many points did she have left? Answer: 18 point	The number of points gained by Susan $=$ 20 The percentage of the total points lost $=$ 10\% Therefore, the number of points lost $\begin{aligned} & =\frac{10}{100} \times 20 \\ & =2 \end{aligned}$ The number of points Susan now has left $=20-2=18$			
23.	Jack tried to climb 20 m up a coconut tree. For every 5 m he climbed, he fell back 2 m . How far up the tree would he have reached after falling 3 times? Answer: 9 m	Jack falls back 2 m for every 5 m climbed. Hence, after every fall Jack will be $5-2=3$ metres further up the tree. After falling from the tree 3 times, Jack would be $3 \times 3=9$ metres up the tree. The words slipped or slided is more appropriate than the word fell in this context. Also, the 20m information is irrelevant in the question.			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
24.	Dad had a piece of rope that was $4 \frac{3}{4} \mathrm{~m}$ long. He cut $3 \frac{1}{2} \mathrm{~m}$ of it to make a swing. What is the length of the remaining piece of rope? Answer: $\mathbf{1 1 m}_{\mathbf{1 0}}^{\mathbf{m}}$	The original length of the rope $=4 \frac{3}{4} \mathrm{~m}$ The length of the piece that was cut off $=3 \frac{1}{2} \mathrm{~m}$ The remaining length of rope is: $\begin{gathered} 4 \frac{3}{5}-3 \frac{1}{2} \\ 1 \frac{2(3)-5(1)}{10}=1 \frac{1}{10} \mathrm{~m} \end{gathered}$			
25.	Mr. Singh planted a tree. Each week, the tree grew by 0.24 m . How many weeks did the tree take to grow 6 m ? Answer: 25 weeks	The growth of the tree per week $=0.24 \mathrm{~m}$ To grow a total of 6 m , the time taken would be $\frac{6}{0.24}$ weeks. $\frac{6}{\frac{24}{100}}=\frac{6 \times 100}{24}=25 \text { weeks }$			
26.	Jasmine went to the market and purchased 32 fruits consisting of 6 apples, some oranges and some guavas. She purchased twice as many oranges as apples. She recorded her purchase as shown in the table below. a) Complete the table. (i) (ii) b) What percentage of the fruits purchased was apples? Answer: $18 \frac{3}{4} \%$	a) The total number of fruits bought $=32$ The number of apples bought $=6$ The number of oranges bought is twice the number of apples. i. The number of oranges bought $2 \times 6=12$ ii. The total number of apples and oranges bought $=6+12=18$ Therefore, the number of guavas bought will be $32-18=14$ $\begin{aligned} & \text { b) The percentage of apples purchased } \\ & =\frac{\text { Number of apples }}{\text { Total number of fruits }} \times 100 \\ & =\frac{6}{32} \times 100=\frac{600}{32} \\ & =\frac{75}{4} \\ & =18 \frac{3}{4} \% \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
33.	The cost price of a television is $\$ 1200$. VAT is calculated at 15% of the cost price. a) Calculate the amount of VAT. Answer: \$180 b) Calculate the TOTAL amount that a customer pays for the television. Answer: \$1380 c) Larry bought one of the televisions but later sold it for $\$ 980$. Calculate his loss as a percentage of the cost price. Answer: $28 \frac{68}{69} \%$ if Larry paid VAT Answer: $18 \frac{1}{3} \%$ If Larry did not pay VAT	a) $\mathrm{VAT}=15 \%$ of the cost price $\begin{aligned} & =\frac{15}{100} \times \$ 1200 \\ & =\$ 180 \end{aligned}$ b) Amount a customer will pay for the television $\begin{aligned} & =\text { Cost price }+ \text { VAT } \\ & =\$ 1200+\$ 180 \\ & =\$ 1380 \end{aligned}$ c) The selling price of $\$ 980$ is less than the price paid of $\$ 1380$. $\begin{aligned} \text { The loss } & =\text { Price paid }- \text { Selling price } \\ & =\$ 1380-\$ 980 \\ & =\$ 400 \end{aligned}$ Loss as a percentage of the cost price. We must interpret the cost price as Larry's cost price $\begin{aligned} & =\frac{\text { Loss }}{\text { Cost Price }} \times 100 \\ & =\frac{\$ 400}{\$ 1380} \times 100 \\ & =28 \frac{68}{69} \% \end{aligned}$ The price of $\$ 1200$ is really the 'marked price'. The cost price for the customer is the price plus VAT. However, candidates were told that the cost price was $\$ 1200$ and so it may be assumed that Larry did not pay VAT. In such a case, Larry's loss will be: \$1 200-\$980 = \$220 His loss percent will be: $\begin{aligned} & \frac{\$ 220}{\$ 1200} \times 100 \% \\ & =18 \frac{1}{3} \% \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
34.	The side of a square is 11 cm . a) What is the area of the square? Answer: 121 cm 2 b) What is the perimeter of the same square? Answer: 44 cm c) Two sides of the square are extended by 3 cm as shown below. What is the area of the NEW shape? Answer: 154 cm 2	a) Length of side of square $=11 \mathrm{~cm}$ $\begin{aligned} \text { Area }=\text { Side } \times \text { Side } & =11 \times 11 \\ & =121 \mathrm{~cm}^{2} \end{aligned}$ b) $\begin{aligned} & \text { Perimeter of Square }=\text { Side } \times 4 \\ & =11 \mathrm{~cm} \times 4 \\ & =44 \mathrm{~cm} \end{aligned}$ c) The new figure is a rectangle which is 11 cm wide and $11+3$ $=14 \mathrm{~cm}$ long. Area of the rectangle $=$ length \times width $=14 \mathrm{~cm} \times 11 \mathrm{~cm}$ $=154 \mathrm{~cm}^{2}$			
35.	$\$ 8.25$ was shared between Pam and her sister Rita in proportion to their ages. Pam is 12 years old and Rita is 8 years old. a) Express their ages as a ratio in its SIMPLEST form. Answer: 3:2 b) Calculate the amount of money each girl receives. Answer: Pam receives $\mathbf{\$ 4 . 9 5}$ Rita receives $\mathbf{\$ 3 . 3 0}$	a) Pam is 12 years old. Rita is 8 years old. Pam's age to Rita's age is 12 to 8 . Divide by 4 we get 3 to 2 , which is written as $3: 2$ b) The amount of money to be shared is $\$ 8.25$. The total number of shares is considered as $2+3=5$ Pam receives 3 shares and Rita 2 shares Pam would receive $\frac{3}{3+2}=\frac{3}{5}$ of the total share. $\frac{3}{5} \times \$ 8.25=\$ 4.95$ Rita would receive $\frac{2}{3+2}=\frac{2}{5}$ of the share. $\frac{2}{5} \times \$ 8.25=\$ 3.30$			

No.	TEST ITEMS	WORKING COLUMN				Do Not Write Here		
						KC	AT	PS
37.	The angle formed between the hands of the clock shown below is marked with ' y '. a) Circle the term below that BEST describes angle y. Right angled Acute Obtuse b) Complete the following statement. Angle y measures 240 degrees	The number of 30° angles between 11 and 7 is 8 . $\begin{aligned} \text { Angle } \begin{aligned} & =30^{\circ} \times 8 \\ & \times 240^{\circ} \end{aligned} \end{aligned}$ It is important to realise that the hands of a real working clock cannot point to 11 and 7 exactly at the same time.						
38.	 Draw the image of the shape KLMNOP such that XY is a line of symmetry.	The completed shape will also occupy the same positions on the left hand side of the line XY as does the points $\mathrm{L}, \mathrm{M}, \mathrm{N}$ and O . By locating the image of each of these points we can draw the image of the entire shape. It is illustrated in red in the diagram shown below.						

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here			
			KC	AT	PS	
39.	The diagram below shows three triangles labelled W, X and Y . The line segments marked with the double strokes $(\\|)$ are equal in length. a) Which triangle is i. Right-angled? Answer: W ii. equilateral? Answer: Y b) What type of quadrilateral is the whole figure (W, X and Y combined)? Answer: Rectangle	a) i) The right-angled triangle is W since one of its angles is a right angle. ii) In triangle Y, all the sides are equal. Triangle Y is therefore equilateral. b) The figure is a rectangle. Note that the proof involves the properties of parallel lines and is beyond the scope of the primary curriculum.				
40.	The pie chart below shows how a budget of $\$ 540$ was spent on certain school supplies. How many dollars were spent on pens? Answer: \$90	The circle is divided into 4 sectors. The angles of three of the sectors are $126^{\circ}, 54^{\circ}$ and 120°. The sum of these three angles is $126^{\circ}+120^{\circ}+54^{\circ}=300^{\circ}$ The sum of all the angles at the centre of a circle is 360° Hence, the angle of the sector representing pens is $=360^{\circ}-300^{\circ}=60^{\circ}$ Therefore, the fraction of the pie chart representing the amount spent on pens is $\frac{60^{\circ}}{360^{\circ}}=\frac{1}{6}$. A total of $\$ 540$ was spent. The amount of money spent on pens is $\frac{1}{6} \times \$ 540=\$ 90$				

SECTION III

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
41.	Mr. Green bought a box of mangoes. 60% were ripe, 25% were green and the remainder had to be thrown away. The box contained 300 mangoes. a) How many mangoes were ripe? Answer: 180 b) How many mangoes had to be thrown away? Answer: 45 c) Mr. Green paid $\$ 60$ for the box of mangoes. Calculate the amount of money he lost. Answer: \$9	a) 60% of the total number of mangoes were ripe The number of ripe mangoes $\frac{60}{100} \times 300$ $=180$ b) 60% were ripe and 25% were green Hence, ripe and green mangoes together total $60 \%+25 \%=85 \%$ The whole consists of 100%. The remainder $=100 \%-85 \%$ $=15 \%$ Therefore, 15% of the mangoes were thrown away. The number of mangoes thrown away $\begin{gathered} =\frac{15}{100} \times 300 \\ =45 \end{gathered}$ c) We may assume that Mr. Green would have lost money because he threw away some mangoes. Since 15% were thrown away, his loss can be $\begin{aligned} & 15 \% \text { of } \$ 60 \\ & =\frac{15}{100} \times \$ 60 \\ & =\$ 9 \end{aligned}$ The question did not mention what Mr. Green did with the mangoes. To incur a loss, he must sell the mangoes at a price lower that his cost. Since there is no information on his selling price, we cannot assume that he had a loss.			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
42.	There are 168 students in a school. There are twice as many girls as there are boys. a) Calculate the number of girls in the school. Answer: 112 b) The students are to be divided into 7 classes so that each class has the same number of girls and the same number of boys. Calculate the number of girls and the number of boys in EACH class. Answer: 16 girls 8 boys c) Apples are sold in boxes each containing one dozen. How many boxes will the teacher have to buy so that EACH student receives ONE apple? Answer: 2 boxes per class OR 14 boxes for the entire school.	a) We can represent the number of students in school as follows: 168 There are twice as many girls as there are boys. $\frac{2}{3}$ of the school's population are girls, so the number of girls is $\frac{2}{3} \times 168=112$ b) 168 students comprise 112 girls and $168-112=56$ boys. The 112 girls and 56 boys are divided equally into 7 classes. $7 \longdiv { 1 1 2 }$ $7 \lcm{56}$ 16 8 Hence each class will have 16 girls and 8 boys. c) Each of 168 students receives 1 apple. Each box has 1 dozen or 12 apples. In each class there are $16+8=24$ students. Number of boxes of apples required per class is $24 \div 12=2$ For the entire school, the number of boxes is $7 \times 2=14$ Part (b) would have been clearer if stated as follows: The boys are equally divided among the 7 classes and the girls are also equally divided among the 7 classes. Also, in part (c), one is unsure as to whether the teacher bought apples for a class of 24 or for the entire school population of 168 .			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
43.	The bottle in the diagram holds 2 litres of soda when full. Jita fills 4 glasses with 180 ml of soda. a) How many litres of soda are left in the bottle? Answer: 1.28 litres b) How many MORE full glasses can she pour from the remaining soda? Answer: 7 glasses	a) 4 glasses each hold 180 ml The total amount of soda in all 4 glasses $=180 \times 4=720 \mathrm{ml}$ The amount of soda left in the bottle $\begin{aligned} & =21-720 \mathrm{ml} \\ & =(2 \times 1000)-720 \mathrm{ml} \\ & =1280 \mathrm{ml} \end{aligned}$ The amount in litres $=\frac{1280}{1000}$ $=1.28$ litres b) Number of glasses that can be poured from the remaining soda $\begin{gathered} =\frac{\text { Volume of soda remaining }}{\text { Volume of soda in 1 glass }} \\ =\frac{1280}{180} \\ =7 R 20 \mathrm{ml} \end{gathered}$ Hence, 7 full glasses can be poured from the remaining soda and there will be 20 ml of soda left in the bottle. Although a diagram was provided, the question would have been free from ambiguity if stated as follows: Jita filled 4 glasses, each holding 180 ml of soda. Some candidates may assume that the total poured into all 4 glasses was 180 ml . The number of $\mathbf{~ m l ~ l e f t ~}$ will now be $2000-180=1720 \mathrm{ml}$ $=1.72$ litres In this case one glass would hold $180 \div 4=45 \mathrm{ml}$ each. The number of glasses that can now be filled would will be $1720 \div 45=38$.)		

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
45.	The positions of triangles ABC , DBC and FEC are shown below. a) What term is used to describe the movement of triangle ABC to the position of triangle FEC? Answer: a $\frac{1}{4}$ turn in an anticlockwise direction OR a $\frac{3}{4}$ turn in a clockwise direction. b) The triangle ABC moves to the position of triangle BDC. Describe the movement fully. Answer: Reflection in the line BC c) What type of triangle is the combined shape, triangle ADC? Answer: Equilateral	a) Triangle ABC was moved to triangle FEC. Consider the line BC and its new position EC. The movement can be described as either: - A quarter turn in an anticlockwise direction OR - A three-quarter turn in a clockwise direction as shown in the diagram below. b) Triangle ABC is moved to triangle DBC. The movement is supposed to be a reflection in the line BC . c) In triangle ABC , the angles at A and at B are both 60°. Hence, the third angle, at C, would also be 60°. Therefore, the triangle ABC is best described as equilateral. NOTE: There is no transformation or even a combination of transformations that could move triangle ABC to BDC. The triangle should be named DBC. Only then is it a reflection.	${ }^{\sim}$		

