SEA MATHS 2012

Section I

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
8.	Write the correct number in the circle to find the result shown. Answer : 10	We can work backwards to reverse this process in order to find the number. The first step is - subtract 12 $42-12=30$ The $2^{\text {nd }}$ step is - divide by 3 $30 \div 3=10$ The number in the circle is 10 .			
9.	Nikki has a total of $\$ 7.00$ in her piggy bank. If she only saves 25 ¢ coins, how many 25 ¢ coins does she have? Answer: 28 coins	$\begin{aligned} \$ 1.00 & =100 \phi \\ & =4 \times 25 \phi \end{aligned}$ One dollar is equivalent to four 25ϕ coins Total that Nikki has in her piggy bank is $=7$ dollars Number of 25ϕ coins in 7 dollars $=(4 \times 7)=28$ Number of 25ϕ coins Nikki saved is 28			
10.	The shape below has sides that are all equal. What is the perimeter of this shape? Answer: 60 cm	The figure has 4 sides. All sides are equal and measure 15 cm each. Therefore, the perimeter of the shape $\begin{aligned} & =15 \mathrm{~cm} \times 4 \text { or }(15+15+15+15) \mathrm{cm} \\ & =60 \mathrm{~cm} \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
11.	The area of a square is $121 \mathrm{~cm}^{2}$. Calculate the length of ONE of its sides. Answer: 11 cm	Area of a square $=$ Side \times Side $\begin{array}{r} \text { side } \times \text { side }=121 \\ 11 \times 11=121 \end{array}$ Length of one side $=11 \mathrm{~cm}$			
12.	Karen's journey from Rio Claro to Port-of-Spain took 205 minutes. How many HOURS did her journey take? Answer: $\mathbf{3} \frac{\mathbf{5}}{\mathbf{1 2}}$ hours	$\begin{aligned} & \text { Time taken in minutes }=205 \\ & 60 \text { minutes }=1 \text { hour } \\ & 1 \text { minute }=\frac{1}{60} \text { hour } \\ & 205 \text { minutes }=\frac{205}{60} \text { hours } \\ &=3 \frac{25}{60} \text { hours, which reduces to } \\ &=3 \frac{5}{12} \end{aligned}$			
13.	Lisle has $\$ 6.00$. Pencils are sold at $\$ 1.25$ each. What is the GREATEST number of pencils that Lisle can buy? Answer: 4 pencils	The cost of each pencil $=\$ 1.25$ Lisle has $\$ 6.00$ The number of pencils Lisle can buy is found by calculating how many $\$ 1.25$ make up $\$ 6.00$ $\begin{aligned} \text { Number of pencils } & =\frac{\$ 6.00}{\$ 1.25} \\ & =\frac{600}{125} \\ & =\frac{24}{5} \\ & =4 \frac{4}{5} \end{aligned}$ We can discard the remainder 4 (which represents $\frac{4}{5}$ of a pencil) since Lisle cannot buy a fraction of a pencil, The greatest number of pencils that can be bought is 4 .			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
16.	What is the name of the solid that will be formed when the net below is folded? Answer: A square based pyramid	When the shape is folded to form a solid, all the vertices of the triangles will meet at a point. This point is now the apex of a square based pyramid. The completed solid would look like:			
17.	Complete the shape below so that XY is a line of symmetry.	The image is the same distance from the line of symmetry, XY, and on the opposite side of XY as the object. When folded along the line XY the object and image will match exactly with no overlap.			
18.	The diagram below shows an angle labelled x°. PQ is a straight line. Calculate the value of x. Answer: 32	The sum of the angles on a straight line $=180^{\circ}$. There are three angles shown and two values are given. The sum of the known angles is $\begin{aligned} & =90^{0}+58^{0} \\ & =148^{0} \end{aligned}$ The remaining angle, $x^{0}=180^{\circ}-148^{\circ}$ Hence, $x=32$			

Section II

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
21.	How many pieces of string of length 0.3 m can be cut from a piece 10.5 m long? Answer: 35 pieces	Total length of string $=10.5 \mathrm{~m}$ The length of 1 piece of string $=0.3 \mathrm{~m}$ The number of 0.3 m long pieces of string that can be cut from the piece 10.5 m long $=\frac{10.5}{0.3}=\frac{10.5 \times 10}{0.3 \times 10}=\frac{105}{3}=35$			
22.	Three-quarters of a number is 60 . What is $\frac{1}{5}$ of the SAME number? Answer: 16	Let the rectangle below represent the whole number, divided into quarters. Three quarters of the number $=60$ One quarter of the number $=60 \div 3$ $=20$ Four quarters or the whole number $=20 \times 4=80$ $\frac{1}{5}$ of the number is therefore: $\frac{1}{5} \times 80=80 \div 5=16$			
23.	Which of the following fractions is the LARGEST? $\frac{5}{8}, \quad \frac{2}{3}, \quad \frac{7}{12}$ Answer: $\frac{\mathbf{2}}{3}$	We can use a common denominator of 24 to express all three fractions (8,3 and 12 are factors of 24). Converting each fraction to an equivalent form with denominator 24 , we get: $\begin{aligned} & \frac{5}{8}=\frac{5}{8} \times \frac{3}{3}=\frac{15}{24} \\ & \frac{2}{3}=\frac{2}{3} \times \frac{8}{8}=\frac{16}{24} \\ & \frac{7}{12}=\frac{7}{12} \times \frac{2}{2}=\frac{14}{24} \end{aligned}$ The largest fraction is the one with the largest numerator. This is $\frac{16}{24}$ or $\frac{2}{3}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
26.	Lisa buys some sweets for a party. She fills 20 bags with 14 sweets each. She has 10 sweets left over. a) How many sweets did Lisa buy? Answer: 290 sweets b) How many bags could she fill if she puts 12 sweets in EACH bag? Answer: 24 bags	a) Lisa fills 14 bags with 20 sweets each Number of sweets in all the bags $\begin{aligned} & =14 \times 20 \\ & =280 \end{aligned}$ Number of sweets left over $=10$ Total number of sweets that Lisa bought $=$ Number sweets in the bags + Number of sweets left over $\begin{aligned} & =280+10 \\ & =290 \end{aligned}$ b) Lisa puts 12 sweets in each bag. Number of bags $=290 \div 12$. $1 2 \longdiv { 2 9 0 } -$ $\frac{24}{50}-$ 48 Lisa can fill 24 bags with 2 sweets left over. Therefore, Lisa would be able to completely fill 24 bags.			
27.	Calculate: $3 \frac{2}{3} \div \frac{5}{6}$ Answer: $4 \frac{\mathbf{2}}{5}$	$3 \frac{2}{3} \div \frac{5}{6}$ Converting to improper fractions: $\begin{aligned} & 3 \frac{2}{3}=3+\frac{2}{3}=\frac{9}{3}+\frac{2}{3}=\frac{11}{3} \\ & \frac{11}{3} \div \frac{5}{6} \end{aligned}$ Inverting the divisor and multiplying: $\begin{aligned} \frac{11}{3} \times \frac{6}{5} & =\frac{22}{5} \\ & =4 \frac{2}{5} \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
28.	A team earns 2 points for a win, 1 point for a draw and no points for a loss. The table below shows the points earned by the team. The team played 25 games. How many games did the team lose? Answer: 7 games	Points earned for each game won $=2$ The team earned a total of 16 points in games won Number of games won $\begin{aligned} & =\frac{16}{2} \\ & =8 \text { games } \end{aligned}$ Points earned for each game drawn $=1$ The team earned a total of 10 points for each game drawn Number of games drawn $\begin{aligned} & =\frac{10}{1} \\ & =10 \text { games } \end{aligned}$ Number of games in which team either won or drawn $\begin{aligned} & =8+10 \\ & =18 \end{aligned}$ Total number of games played $=25$ Number of games lost $=25-18=7$			
29.	Gina buys the blouse below which is priced at $\$ 180.00$. After discount, how much money does she pay for the blouse? Answer: \$153	The marked price of the blouse $=\$ 180$ Discount percent $=15 \%$ Discount $=15 \%$ of $\$ 180$ $\begin{aligned} & =\frac{15}{100} \times \$ 180 \\ & =\$ 27 \end{aligned}$ Price Gina pays $=$ Marked price - The discount $=\$ 180-\$ 27$ $=\$ 153$ OR Gina pays $(100-15) \%$ of $\$ 180$ $\begin{aligned} & =\frac{85}{100} \times \$ 180 \\ & =\$ 153 \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
30.	An examination began at 8:30 a.m. and was done in two parts. The first part lasted for 1 hour 50 minutes. The second part lasted for 1 hour 15 minutes. At what time did the examination finish if there was a 20-minute break after the first part? Answer: 11:55 a.m.	Starting time of the examination is $8: 30$. Duration of the $1^{\text {st }}$ exam 1:50. $1^{\text {st }}$ part of the exam ends at: 1 8:30 + $\underline{1: 50} 50 \mathrm{~min}+30 \mathrm{~min}=1 \mathrm{hr} 20 \mathrm{~min}$ $10: 20$ Duration of the break period is 0:20. Break ends that: $\begin{gathered} 10: 20+ \\ \frac{: 20}{10: 40} \end{gathered}$ Duration of the $2^{\text {nd }}$ examination is $1: 15$ Examination ends at: $\begin{aligned} & 10: 40+ \\ & \frac{1: 15}{11: 55} \end{aligned}$ Examination ends at 11:55 a.m.			
31.	The semi-circle PQRT with radius 7 cm fits inside the rectangle PRSU as shown in the diagram below. Calculate the perimeter of the rectangle PRSU. Answer: 42 cm	The distance from Q to T is 7 cm , since it is the length of the radius of the circle, PQ . The width of the rectangle $\mathrm{PU}=7 \mathrm{~cm}$, since it is the same length as QT. Diameter PR $=7 \times 2=14 \mathrm{~cm}$ and is the length of the rectangle. Perimeter of the rectangle $\begin{aligned} & =2(\text { Length }+ \text { Width }) \\ & =2(14+7) \\ & =2(21) \\ & =42 \mathrm{~cm} \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
33.	Jane has an EQUAL number of $\$ 20, \$ 10, \$ 5$ and $\$ 1$ bills. a) What is the LEAST amount that Jane could have? Answer: \$36 b) If Jane has $\$ 144.00$, how many of EACH type of bill does she have? Answer: 4 of $\$ 20$ bills, 4 of \$ 10 bills, 4 of $\$ 5$ bills and 4 of $\$ 1$ bills	a) Jane has an equal number of $\$ 20$, $\$ 10, \$ 5$ and $\$ 1$ bills. Jane would have at least one of each bill. Total money would be: $\begin{aligned} & \$ 20 \times 1=\$ 20 \\ & \$ 10 \times 1=\$ 10 \\ & \$ 5 \times 1=\$ 5 \\ & \$ 1 \times 1=\underline{\$ 1} \\ & \$ 36 \end{aligned}$ b) Jane has a total of $\$ 144$. Notice $\$ 144=4 \times \$ 36$ So, Jane has 4 times the number of bills that she may have had when her total was $\$ 36$. Jane would now have			
34.	Ali borrowed $\$ 5000.00$ from the bank for a period of 3 years at a rate of 8% per annum. a) Calculate the simple interest that Ali must repay. Answer: \$1200 b) How much money must Ali repay the bank at the end of 3 years? Answer: \$6200	a) The amount of money borrowed $=\$ 5000$ (Principal) The time of the loan $=3$ years The rate of interest $=8 \%$ per annum Simple interest $\begin{aligned} & =\frac{\text { Principal } \times \text { Rate } \times \text { Time }}{100} \\ & =\frac{\$ 5000 \times 3 \times 8}{100} \\ & =\$ 1200 \end{aligned}$ b) The amount of money to be repaid $\begin{aligned} & =\text { Principal }+ \text { Interest } \\ & =\$ 5000+\$ 1200 \\ & =\$ 6200 \end{aligned}$			

Section III

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
43.	The shape of a floor shown below has two portions, as equilateral triangle (A) attached to one side of a square (B) with sides 12 m . a) Complete the following statement: The perimeter of the ENTIRE floor is $\underline{60} \mathrm{~m}$. b) The square portion (B) ONLY is to be covered with tiles. i. The area of B is $144 \mathrm{~m}^{2}$. ii. B is to be covered using square tiles with sides measuring 30 cm . How many tiles are needed? Answer: 1600 tiles iii. One of the tiles to be used for covering B costs \$4.00. How much will the tiles cost if 10 extra ones are added in case any break?	a) Since triangle A is equilateral, all sides are equal. Each side of the square B is of length 12 m . Each side of the equilateral triangle, A is 12 m . The perimeter of the floor is the sum of the lengths of 3 sides of the square, B and 2 sides of the triangle, A $\begin{aligned} & =12+12+12+12+12 \\ & =60 \mathrm{~m} \end{aligned}$ b) i) Area of the square B $\begin{aligned} & =\text { Side } \times \text { Side } \\ & =12 \times 12 \mathrm{~m}^{2}=144 \mathrm{~m}^{2} \end{aligned}$ ii) Length of the side of each square tile $=30 \mathrm{~cm}=\frac{30}{100}=0.3 \mathrm{~m}$ Area of each tile $=0.3 \times 0.3 \mathrm{~m}^{2}$ $=0.09 \mathrm{~m}^{2}$ Number of tiles to be used to cover B $\begin{aligned} & =\frac{\text { Area of B }}{\text { Area of } 1 \text { tile }} \\ & =\frac{144}{0.09}=\frac{14400}{9}=1600 \end{aligned}$ 1600 tiles are needed iii) Number of tiles required to cover B $=1600+10=1610$ Cost of 1 tile $\$ 4.00$ Cost of 1610 tiles $=\$ 4 \times 1610=\$ 6440$	\cdots		

		WORKING COLUMN		Do Not Write Here		
				KC	AT	PS

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
46.	Six boys ran a 100 m race. The time (in seconds) taken by each boy is shown in the graph below. a) Who won the race? Answer: Eze b) For which position were two boys tied? Answer: Third place c) Who was the SLOWEST runner? Answer: Che d) How long did the race last? Answer: 14 seconds e) How much longer than the first-place runner did the slowest boy take to run the race? Answer: 4 seconds	a) The person who won the race is the one who took the shortest time. The shortest bar indicates the shortest time. The shortest bar is seen at Eze's and so, Eze won the race. b) If two boys tied, they would have ran the race in the same time. Both Ben and Don ran the race in the same time as their bars are equal in height. Their bars indicate that they place third (Both Eze and Al had better times). Therefore, both Ben and Don tied for third place. c) The slowest runner took the longest time and would correspond to the tallest bar. This corresponds to Che. Therefore, Che was the slowest runner. d) The race would have lasted for the length of time taken for the slowest runner to complete it. The slowest runner was Che. Che took 14 seconds. Therefore, the race lasted 14 seconds. e) The fastest boy, Eze, took 10 seconds. The slowest boy, Che, took 14 seconds. Therefore, the slowest runner took (14-10) seconds $=4$ seconds more than the first-place runner to run the race.			

