SEA MATHS 2011

Section I

No.	TEST ITEMS	WORKING COLUMN					Do Not Write Here		
							KC	AT	PS
1.	Calculate: $\begin{array}{r} 1996 \\ -\quad 684 \\ \hline \end{array}$ \qquad Answer: 1312	$\begin{array}{r} 1996 \\ -\quad 684 \\ \hline 1312 \end{array}$							
2.	Write in words: 12540 Answer: Twelve thousand, five hundred and forty	TTh 1 $\begin{array}{c}\text { Twe } \\ \text { thou }\end{array}$	Th		Tens 4 Forty	Units $\mathbf{0}$			
3.	A starfish has 5 arms as shown below. How many arms will 16 starfish have? Answer: 80 arms	 1 starfish has 5 arms 16 starfish will have 5×16 arms $=80 \mathrm{arms}$							
4.	Write 8.74 to the NEAREST tenth. Answer: 8.7	The digit after the tenths digit, which is 4 , is now omitted Hence, $8.7 \underline{=}=8.7$ to the nearest tenth							

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
5.	Arrange the fractions below in ASCENDING order. (Begin with the SMALLEST.) $\frac{1}{4} \quad \frac{1}{12} \quad \frac{1}{3} \quad \frac{1}{6}$ Answer: $\frac{1}{12}, \frac{1}{6}, \frac{1}{4}$ and $\frac{1}{3}$	$\frac{1}{4}, \frac{1}{12}, \frac{1}{3}$ and $\frac{1}{6}$ should all be expressed as fractions in the same denominator, so as to easily compare them. 12 is a common multiple of 3,4 and 6 . We now express each as an equivalent fraction with denominator 12 . $\begin{aligned} & \frac{1}{4}=\frac{1 \times 3}{4 \times 3}=\frac{3}{12} \\ & \frac{1}{3}=\frac{1 \times 4}{3 \times 4}=\frac{4}{12} \\ & \frac{1}{6}=\frac{1 \times 2}{6 \times 2}=\frac{2}{12} \end{aligned}$ The smallest of the four given fractions is $\frac{1}{12}$. Beginning with the smallest, we have: $\frac{1}{12}, \frac{2}{12}, \frac{3}{12}$ and $\frac{4}{12}$ OR $\frac{1}{12}, \frac{1}{6}, \frac{1}{4}$ and $\frac{1}{3}$ (written in original form)			
6.	Jamie divides an orange into 12 equal slices. She gives $\frac{3}{4}$ to her friend. How many slices does Jamie give to her friend? Answer: 9 slices	Number of slices $=12$ $\frac{1}{4}$ of this number of slices $=12 \div 4=3$ $\frac{3}{4}$ of the number of slices $=3 \times 3=9$ Therefore, the number of slices Jamie gave to her friend is 9 OR $\frac{3}{4} \times 12=9$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
12.	The width of the rectangular card below is 4 cm . The length, $x \mathrm{~cm}$, of the card is twice the width. Calculate the area of the card. Answer: $32 \mathrm{~cm}^{2}$	The length of the rectangle is twice the width, therefore Length, $x \mathrm{~cm}=2 \times$ width $\begin{aligned} & =2 \times 4 \mathrm{~cm} \\ & =8 \mathrm{~cm} \end{aligned}$ Area of rectangle $=$ length \times width $\begin{aligned} & =8 \times 4 \\ & =32 \mathrm{~cm}^{2} \end{aligned}$			
13.	A piece of board has the shape shown below. The perimeter of the board is 40 cm . Calculate the length of the side marked $d \mathrm{~cm}$. Answer: 5 cm	Perimeter of board $=40 \mathrm{~cm}$ The perimeter is the sum of the lengths of all the 6 sides Sum of the lengths of 5 sides $\begin{aligned} & =10 \mathrm{~cm}+7 \mathrm{~cm}+9 \mathrm{~cm}+6 \mathrm{~cm}+3 \mathrm{~cm} \\ & =35 \mathrm{~cm} \end{aligned}$ Length of sixth side $=d \mathrm{~cm}$ $\begin{aligned} & d=40-35 \mathrm{~cm} \\ & d=5 \mathrm{~cm} \end{aligned}$			
14.	Indira awoke at quarter past seven. Draw in the hands on the clock below to show the time Indira awoke.	A quarter past seven is 15 minutes past 7 o'clock. The long hand should point at 3 to indicate 15 minutes after the hour. The hour hand between 7 and 8 as shown.			

Section II

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
21.	Calculate: $16 \frac{1}{5} \div 2 \frac{7}{10}$ Answer: 6	$\begin{aligned} & 16 \frac{1}{5}=\frac{81}{5} \quad 2 \frac{7}{10}=\frac{27}{10} \\ & 16 \frac{1}{5} \div 2 \frac{7}{10} \\ & =\frac{81}{5} \div \frac{27}{10} \\ & =\frac{81^{3}}{\not 6} \times \frac{10^{2}}{27} \\ & =3 \times 2 \\ & =6 \end{aligned}$			
22.	Ravi has 56 marbles. Scott has half as many as Ravi. How many marbles do they have ALTOGETHER? Answer: 84 marbles	Ravi has 56 marbles. Scott has half as many. Therefore, the number Scott has $=\frac{1}{2}(56)$ $=28$ marbles The total number of marbles that both boys have $\begin{aligned} & =56+28 \\ & =84 \end{aligned}$			
23.	In a speed-reading competition, Anna read 10 pages for every 7 pages that Kevin read. At the end of the competition, Kevin read 140 pages. How many pages did Anna read? Answer: 200 pages	Kevin read 140 pages. Anna read 10 pages for every 7 pages that Kevin read. Number of groups of ' 7 ' in $140=\frac{140}{7}$ $=20$ Number of pages Anna reads $=20 \times 10$ $=200$ pages			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
26.	a) Write in the box below the sign, > or <, that CORRECTLY completes the number sentence. Answer: $\frac{3}{4} \square>\frac{2}{3}$ b) Find the difference between $\frac{3}{4} \text { and } \frac{2}{3}$ Answer: $\frac{1}{12}$	a) To compare $\frac{3}{4}$ and $\frac{2}{3}$ we express them both with the a common denominator of 12 . $\begin{aligned} & \frac{3}{4}=\frac{3 \times 3}{4 \times 3}=\frac{9}{12} \\ & \frac{2}{3}=\frac{2 \times 4}{3 \times 4}=\frac{8}{12} \end{aligned}$ $\frac{9}{12}$ is greater than $\frac{8}{12}$. Hence, $\frac{3}{4}>\frac{2}{3}$. b) Difference between $\frac{3}{4}$ and $\frac{2}{3}$ is the same as the difference between $\frac{9}{12}$ and $\frac{8}{12}$. $=\frac{9}{12}-\frac{8}{12}$ $=\frac{1}{12}$			
27.	Complete the table below by writing in the CORRECT percentage at (a) and fraction at (b).	a) The fraction $\frac{2}{3}$ as a percentage $\begin{aligned} & =\frac{2}{3} \times 100 \\ & =66 \frac{2}{3} \% \end{aligned}$ b) The decimal 0.005 as a fraction $\begin{aligned} & =\frac{5}{1000} \\ & =\frac{1}{200} \text { as a fraction in lowest terms } \end{aligned}$ These values are inserted in the table, as shown.			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
30.	The combined weight of Jane and her sister, Nora, is 51.4 kg . If Jane is 5.6 kg heavier than Nora, how much does Nora weigh? Answer: $\mathbf{2 2 . 9} \mathbf{~ k g}$	The combined weight of Jane and Nora is represented in the diagram: Jane is heavier than Nora by 5.6 kg . We can replace Jane's weight by Nora's weight plus 5.6 kg . If we subtract 5.6 kg from the total weight of 51.4 kg we will be left with 45.8 kg $51.4-5.6=45.8 \mathrm{~kg}$ Twice Nora's weight $=45.8 \mathrm{~kg}$ Nora's weight $=45.8 \div 2=22.9 \mathrm{~kg}$			
31.	The sides of triangle PQR are equal in length. The perimeter of PQR is 21 cm . a) What is the length of PQ ? Answer: 7 cm b) Two triangles identical to $P Q R$ are combined as shown in Diagram II to form a new shape. Find the perimeter of the new shape. Answer: 28 cm	a) The sum of the three equal sides of triangle $\mathrm{PQR}=21 \mathrm{~cm}$ Length of any one side, say PQ $=21 \mathrm{~cm} \div 3=7 \mathrm{~cm}$ b) Let us name the combined figure PRQS, as shown. Hence, $\mathrm{PR}=\mathrm{RQ}=\mathrm{QS}=\mathrm{SP}=7 \mathrm{~cm}$ The perimeter of the new shape is the total distance around the shape $\begin{aligned} & =\mathrm{PR}+\mathrm{RQ}+\mathrm{QS}+\mathrm{SP} \\ & =7+7+7+7 \mathrm{~cm} \\ & =28 \mathrm{~cm} \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
35.	The entrance fee to a cricket match was $\$ 12$ for a teacher and half-price for a student. A group of 20 students and 3 teachers went to the match. Calculate the TOTAL entrance fee for the group. Answer: \$156	Entry fee for teacher $=\$ 12.00$ Entry fee for student $=\frac{1}{2}$ of $\$ 12.00$ $=\$ 6.00$ Total entrance fee for 20 students $\begin{aligned} & =\$ 6 \times 20 \\ & =\$ 120 \end{aligned}$ Total entrance fee for 3 teachers $\begin{aligned} & =\$ 12 \times 3 \\ & =\$ 36 \end{aligned}$ Total entry fee for the group $\begin{aligned} & =\$ 120+\$ 36 \\ & =\$ 156 \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
39.	XY is a line of symmetry of the incomplete figure ABCD shown below. b) Complete the drawing of ABCD . c) Circle the best term from the list below that BEST describes ABCD. Answer: Answer:	a) A and C lie on the line of symmetry. D will be the same distance from the mirror line as B , but on the opposite side of XY. Join D to A and D to C to complete the diagram. b) Describing the figure ABCD . Since the opposite sides are not parallel, it is not a parallelogram. Since all the sides are not equal, it is neither a rhombus nor a square. Alternate sides are equal, $\mathrm{AB}=\mathrm{AD}$ and $\mathrm{BC}=\mathrm{BD}$ as shown. The figure is a quadrilateral. More precisely it is a kite which is NOT one of the mentioned options.			

Section III

