SEA MATHS 2010

Section I

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
1.	Write in figures: One million, two thousand and three. Answer: 1002003	$\begin{array}{lr} \text { One million } & =1000000 \\ \text { Two thousand } & 2000 \\ \text { Three } & =\begin{array}{r} 3 \\ \underline{1002003} \end{array} \end{array}$			
2.	Express the SHADED PART as a COMMON FRACTION of the whole shape. Answer : $\frac{7}{15}$	The whole shape is divided into a total of $5 \times 3=15$ equal parts. The total number of shaded parts $=7$ The fraction of the whole shape $\begin{gathered} =\frac{\text { Number of shaded parts }}{\text { Total number of parts }} \\ =\frac{7}{15} \end{gathered}$			
3.	Complete the table below. Answer:	To complete the table, we have to express 15% as a fraction. $\begin{aligned} & 15 \%=\frac{15}{100} \\ & =\frac{115}{100}{ }_{20}^{3} \\ & =\frac{3}{20} \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
4.	What number, N , should go in the circle to make the operation CORRECT? Answer: $\mathrm{N}=40$	To find N , we must work backwards, starting at 8 and reverse the operations at each step in the process. The first step is to multiply 8 by 4 : $8 \times 4=32$ Then add 8 to the result: $32+8=40$			
5.	Write in the box the number that CORRECTLY completes the number sentence. $\frac{2}{3}=\frac{}{12}$ Answer: $\frac{2}{3}=\frac{8}{12}$	If we multiply the numerator and denominator of a fraction by the same number we obtain an equivalent form. In this example, the number is 4 because $3 \times 4=12$ Therefore, the number in the box is 8 . OR Using the principle of equating cross products, we obtain: $\begin{aligned} 2 \times 12 & =3 \times \square \\ 3 \times \square & =2 \times 12 \\ \therefore \square & =\frac{2 \times 12}{3} \\ & =8 \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
6.	At the market, a mother bought some fruits: 3 oranges, 4 pears and 5 mangoes. What FRACTION of the fruits was pears? Answer: $\frac{1}{3}$	Total number of fruits that Mother bought $\begin{aligned} & =3+4+5 \\ & =12 \end{aligned}$ Number of pears $=4$ The fraction of the fruits that is pears $\begin{aligned} & =\frac{\text { Number of pears }}{\text { Total number of fruits }} \\ & =\frac{4}{12} \\ & =\frac{1}{3} \end{aligned}$			
7.	Ken eats 4 plums each day. How many plums would he eat in TWO weeks? Answer: 56 plums	Ken eats 4 plums each day. $\begin{aligned} \text { The number of days in } 2 \text { weeks } & =7 \times 2 \\ & =14 \end{aligned}$ The number of plums that Ken eats in 2 weeks $=$ No. of plums he eatseach day \times No. of days in 2 weeks $\begin{aligned} & =4 \times 14 \\ & =56 \text { plums } \end{aligned}$			
8.	At a school bazaar, every seventh student who entered in the first hour was admitted free. If 46 students entered in the first hour, how many of them entered free? Answer: 6 students	If every seventh student will be admitted free, then these students would be the $7^{\text {th }}, 14^{\text {th }}, 21^{\text {st }}, 28^{\text {th }}, 35^{\text {th }}$ and $42^{\text {nd }}$ student. This amounts to 6 students. The number who entered free in the first hour is 6 .			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
9.	Which of the two sacks has the SMALLER mass? Answer: Sack of flour	The mass of the sack of sugar $=1.7 \mathrm{~kg}$ Recall $1000 \mathrm{~g}=1 \mathrm{~kg}$ Mass of sugar in grams $=1.7 \times 1000$ $=1700 \mathrm{~g}$ Mass of flour $=1690 \mathrm{~g}$ 1690 g is less than 1700 g . The sack of flour has the smaller mass.			
10.	A ball is bought for $\$ 35.00$ and sold for $\$ 48.00$. Calculate the profit made in dollars. Answer: \$13.00	Cost price of ball $=\$ 35.00$ Selling price of ball $=\$ 48.00$ $\begin{aligned} & \text { The profit }=\text { Selling price }- \text { Cost price } \\ &=\$ 48.00-\$ 35.00 \\ &=\$ 13.00 \\ & \text { Profit }=\$ 13.00 \end{aligned}$			
11.	A garden has the shape shown below with all the sides of equal length. The perimeter is 72 metres. What is the length of ONE side of the garden? Answer: 12 m	The figure shows the shape of the garden The figure is made up of 6 equal sides and has perimeter $=72 \mathrm{~m}$ The length of each of the 6 equal sides $\begin{aligned} & =\frac{\text { Perimeter }}{\text { Number of sides }} \\ & =\frac{72 \mathrm{~m}}{6} \\ & =12 \mathrm{~m} \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
14.	A rectangular box is 18 cm wide, 24 cm long and 6 cm deep. How many cubes with edges of 6 cm will completely fill the box? Answer: 12 cubes	Dimensions of the rectangular box $=18 \mathrm{~cm}$ by 24 cm by 6 cm Rectangular Box Cube The cube is of side 6 cm The number of cubes required to fill the box $\begin{aligned} & =\frac{\text { Volume of box }}{\text { Volume of cube }} \\ & =\frac{18 \times 24 \times 6}{6 \times 6 \times 6} \\ & =12 \text { cubes } \end{aligned}$ OR Since the side cube measures 6 cm , Number of cubes that fit along the length of the box $=24 \div 6=4$ Number of cubes that fit along the width of the box $=18 \div 6=3$ Number of cubes that fit along the height of the box $=6 \div 6=1$ The number of cubes required to fill the box $=4 \times 3 \times 1=12$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
15.	Jessica bought a blouse for $\$ 80.00$ and sold it for $\$ 60.00$. Calculate the percentage loss on the sale? Answer: 25\%	The cost of the blouse $=\$ 80$ Selling price $=\$ 60$ which is less than the cost price. Hence, there is a loss. $\begin{aligned} \text { Loss }= & \text { Cost Price }- \text { Selling price } \\ & =\$ 80-\$ 60 \\ & =\$ 20 \end{aligned}$ The percentage loss $=\frac{\text { Loss }}{\text { Cost price }} \times 100 \%$ $=\frac{20}{80} \times 100=25 \%$			
16.	A picture of a solid is shown below. What is the name of the solid? Answer: Cylinder	The solid shown has two identical circular faces and a curved surface. The solid is a cylinder or better called a right, circular cylinder.			
17.	A net of a solid is shown below. What is the name of the solid formed when the net is folded? Answer: Triangular based pyramid	ABC is the triangular base. $A B X, A C Y$ and $B C Z$ form 3 triangular faces, drawn from the base. When folded, X, Y and Z will meet at the apex. A triangular based pyramid is formed.			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
18.	The diagram below is a rectangle. The points B, D, F and H are midpoints of its sides. Name ONE line of symmetry of the rectangle. Answer: BF	BF is one of the lines of symmetry. It is better called a line of reflective symmetry. (HD is also one such line).			
19.	The incomplete bar graph shows the number of marbles owned by 3 of 4 boys in a club. Together the 4 boys owned 30 marbles. How many marbles did Tim own? Answer: 5 marbles	From the bar graph we can read off that: Sam owns 6 marbles Sid owns 11 marbles Roy owns 8 marbles These three boys own a total of $6+11+8=25$ marbles The difference between the total owned by all four boys and the amount owned by Sam, Sid and Roy, will be the number of marbles owned by Tim. Hence, Tim owns $30-25=5$ marbles			
20.	The bowler obtained the following number of wickets in 9 matches: $3,1,4,6,4,2,4,1,3$ What is the MODAL number of wickets? Answer: 4	The mode is the item that occurs most often or frequently in any set of data values. By observation of the data, we note that the number 4 occurred three times (3). All other scores had frequencies lower than 3 . Hence, the modal number of wickets is 4 .			

Section II

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
21.	There are 60 donuts in a glass case. Eighteen of them are chocolate coated. What percentage of donuts is NOT chocolate coated? Answer: 70\%	The number of donuts in the case $=60$ The number of donuts that are chocolate coated $=18$ The number that are not chocolate coated $=60-18=42$ The fraction of the donuts that are not chocolate coated is $\frac{42}{60}$. To express this as a percent, we multiply by 100% which is equivalent to one whole. $=\frac{42}{60} \times 100 \%=70 \%$			
22.	If 75% of a class of 32 students are present, how many students are absent from the class? Answer: 8 students	The number of students in the class $=32$ The percentage of students present $=75 \%$ The percentage of students absent $\begin{aligned} & =(100-75) \% \\ & =25 \% \end{aligned}$ The number of students absent $\begin{aligned} & =25 \% \text { of } 32 \\ & =\frac{25}{100} \times 32 \\ & =8 \end{aligned}$ OR The number of students present $=75 \%$ of the total of 32 $\begin{aligned} & =\frac{75}{100} \times 32 \\ & =24 \end{aligned}$ The number of students absent $=$ The total number of students in class the number of students present $\begin{aligned} & =32-24 \\ & =8 \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
24.	The same pattern is followed throughout in the sequence below. What are the next TWO numbers in the sequence? Answer: 21 and 34	$\begin{array}{llllll}1 & 2 & 3 & 5 & 8 & 13\end{array}$ We notice the next number in the pattern is larger than the number before. Hence, the next number is obtained by either multiplication or addition. Since the numbers are not multiples of each other we can rule out multiplication. Adding the first and second numbers, $1+2=3$ Adding the second and third numbers, $2+3=5$ Adding the third and fourth numbers, $3+5=8$ Adding the third and fourth numbers, $5+8=13$ The next two numbers in the pattern are: $8+13=21$ and $13+21=34$			
25.	Sammy planted 526 heads of lettuce. Don planted 98 more than Sammy and 49 more than Linda. a) How many heads of lettuce did Don plant? Answer: 624 b) How many heads of lettuce did Linda plant? Answer: 575 c) Calculate the number of heads of lettuce planted ALTOGETHER. Answer: 1725	Sammy planted 526 heads of lettuce. a) Don planted 98 more than Sammy Don planted $526+98=624$ heads of lettuce. b) Don planted 49 more than Linda. We can also say that Linda planted 49 less than Don. Linda planted $624-49=575$ heads of lettuce. c) Total number of heads of lettuce planted by all three: $\begin{aligned} & =526+624+575 \\ & =1725 \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
31.	The diagram below shows the distances that David covered in a triathlon. How many kilometres did David cover during the entire event? Answer: 15.1 km	David covered 600 m by swimming $\begin{aligned} & =\frac{600}{1000} \mathrm{~km} \quad(1 \mathrm{~km}=1000 \mathrm{~m}) \\ & =0.6 \mathrm{~km} \text { by swimming } \end{aligned}$ Then David covered 6.5 km by cycling and 8 km by running. Total distance covered $\begin{aligned} & =(0.6+6.5+8) \mathrm{km} \\ & =15.1 \mathrm{~km} \end{aligned}$			
32.	Tony borrowed $\$ 12000$ from a bank at a rate of 8% per annum. a) Calculate the simple interest if he agreed to repay the loan in 2 years. Answer: \$1920 b) How much will Tony have to repay the bank? Answer: \$13 920	a) Amount borrowed, which is the Principal = \$12000 Rate $=8 \%$ per annum Time $=2$ years Simple interest $\begin{aligned} & =\frac{\text { Principal } \times \text { Rate } \times \text { Time }}{100} \\ & =\frac{\$ 12000 \times 8 \times 2}{100} \\ & =\$ 1920 \end{aligned}$ b) Amount to be repaid $\begin{aligned} & =\text { Principal }+ \text { Total Interest } \\ & =\$ 12000+\$ 1920 \\ & =\$ 13920 \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
33.	Michael left home at 7:37 a.m. and arrived at school 43 minutes later. He reached school five minutes before the bell rang. At what time did the bell ring? Answer: 8:25 a.m.	The time that Michael left home $=7: 37$ a.m. The time taken for the journey to school = 43 minutes Arrival time at school is calculated by adding 43 minutes to the time he left home. Since Michael arrived 5 minutes before the bell rang, then the bell rang at $8: 20+$:05 8:25 a.m. Time that the bell rang is 8:25 a.m.			
34.	Mr. Ben has to be at work at 9:00 a.m. He must get dressed, eat and walk to work. After getting out of bed, it takes him 15 minutes to get dressed, then 20 minutes to eat and a further 35 minutes to walk to work. a) How long does it take Mr. Ben to get dressed, eat and walk to work? Answer: 1 hour 10 minutes b) What is the LATEST time Mr. Ben should get out of bed in order to get to work on time? Answer: 7:50 a.m.	a) To get dressed takes 15 minutes To eat takes 20 minutes To walk to work takes 35 minutes Total time taken $=\underline{70 \text { minutes }}$ 70 minutes $=1$ hour 10 minutes Therefore, Mr. Ben takes 1 hour 10 mins to get dressed, eat and walk to work. b) Ben has to arrive at work for 9:00 a.m. He should get out of bed at least 1 hr and 10 minutes before 9:00 a.m. The latest time Ben should get out of bed is found by taking away 1 hour and 10 min from the time of 9: 00 am 1 hour before 9:00 am is 8:00 a.m. 10 minutes before 8:00 a.m. is 7:50 a.m. The latest time is 7:50 a.m.			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
39.	The diagram below shows an incomplete shape. Complete the shape so that XY is a line of symmetry.	XY is a line of symmetry. When the shape is folded along the line XY, the points A and E remain on the line. but the points D, C and B will lie on the opposite side of XY - Point D will lie 2 units from XY - Points C will lie 1 unit from XY - Points B will lie 1 unit from XY The completed figure is shown.			
40.	The pictograph shows the first choice of sports for boys in Standard 5. How many boys indicated their choice of sports? Answer: 165 boys	Number of boys who chose volleyball as their $1^{\text {st }}$ choice $=10+10+10+10+5=45 \text { boys }$ Number of boys who chose football as their $1^{\text {st }}$ choice $=10+10+10+10+10+5=55 \text { boys }$ Number of boys who chose cricket as their $1^{\text {st }}$ choice $=10+10+10+10+10+10+5=65 \text { boys }$ Total number of boys who indicated their choice $=45+55+65=165$ boys OR We could add all the pictures to get $41 / 2+$ $51 / 2+6^{1 / 2}=16^{1 / 2}$ Each picture represents 10 boys and so the number of boys $=161 / 2 \times 10=165$.			

Section III

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
41.	At a school fair, 30% of the pies sold had cheese filling, 25% had beef filling and the remaining 90 pies had potato filling. a) What percentage of pies had potato filling? Answer: 45\% b) How many pies were sold at the fair? Answer: 200 pies c) How many MORE cheese pies than beef pies were sold at the fair? Answer: 10 more pies	a) Percentage of pies with cheese filling $=30 \%$ Percentage of pies with beef filling $=25 \%$ This total is $30 \%+25 \%=55 \%$ Remaining percentage of pies $\begin{aligned} & =100 \%-55 \% \\ & =45 \% \end{aligned}$ Hence the percentage of pies with potato filling $=45 \%$ b) The number of pies sold is regarded as the whole and equal to 100% The 90 potato pies represents 45% of the total number of pies. 45% of the pies $=90$ 1% of the pies $=90 \div 45=2$ 100% of the pies $=2 \times 100=200$ Therefore, the total number of pies is 200 c) Cheese pies $=30 \%$ Beef pies $=25 \%$ $\begin{aligned} & \text { Number of cheese pies }=\frac{30}{100} \times 200=60 \\ & \text { Number of beef pies }=\frac{25}{100} \times 200=50 \end{aligned}$ There are more cheese pies that beef pies. The difference is $60-50=10$ Hence, there are 10 more cheese pies than beef pies that were sold at the fair. OR The percentage difference between the number of cheese pies and beef pies $\begin{aligned} & =30 \%-25 \%=5 \% \\ & 5 \% \text { of } 200 \\ & =\frac{5}{100} \times 200=10 \text { pies } \end{aligned}$ They sold 10 more cheese pies than they sold beef pies.			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
42.	The pupils in Standard Five are seated on benches which can seat either 4 pupils (four-seaters) or 3 pupils (three-seaters). Five fourseaters and fifteen three-seaters are available. a) What is the LARGEST number of pupils that can be seated if ONLY the four-seaters are used? Answer: 20 pupils b) On Tuesday, 38 pupils are to be seated and ALL the four-seaters MUST be used. What is the SMALLEST number of three-seaters that are needed? Answer: 6 three-seaters c) On Thursday, 48 pupils are to be seated. How many of EACH type of benches are needed so that ALL seats are occupied and BOTH types of benches are used? Answer: 3 four-seaters and 12 three-seaters	4 pupils sit on four-seaters. There are 5 four-seaters available. If only the four-seaters are used then the largest number of pupils that can be seated $=5 \times 4=20$ pupils. a) On Tuesday 38 pupils are seated and all four-seaters are used. Therefore, 20 pupils were seated on four-seaters and $38-20=18$ pupils remain to be seated on the three-seaters. The number of three-seaters required $=18 \div 3=6$ The smallest number of three-seaters required is 6 . b) On Thursday 48 pupils are to be seated. All the seats on a bench are to be filled. Testing possible options 1. If 5 of the four-seater benches are filled, this seats $5 \times 4=20$ pupils. Then the remaining $48-20=28$ pupils cannot completely fill the threeseater benches since 28 is NOT divisible by 3 . 2. If 4 of four-seaters benches are filled, this seats $4 \times 4=16$ pupils. Then the remaining $48-16=32$ pupils cannot completely fill the three-seater benches since 32 is NOT divisible by 3 . 3. If 3 of four-seater benches are filled, this seat $3 \times 4=$ pupils. Then the remaining $48-12=36$ pupils can fill all the seats of the three-seater benches since 36 is divisible by 3 . Conclusion Option 3 satisfies the conditions. The 48 students will occupy 3 of four-seater benches and 12 three-seater benches. $\begin{aligned} 3 \times 4 \text { seaters } & =12 \text { students } \\ 12 \times 3 \text { seaters } & =36 \text { students } \\ \text { Total } & =48 \text { students } \end{aligned}$			

			WORKING COLUMN			Do Not Write Here		
						KC	AT	PS

