SEA MATHS 2009

Section 1

No.	TEST ITEMS	WORKING COLUMN				Do Not Write Here		
						KC	AT	PS
5.	Carla scored 60 marks out of 75 on a Mathematics test. Express Carla's score as a percentage. Answer: 80\%	Maximum marks possible on the test $=75$ The score made by Carla $=60$. Carla's score as a percent of the total: $\begin{gathered} =\frac{\text { Marks scored }}{\text { Maximum mark }} \times 100 \\ =\frac{60}{75} \times 100 \\ =80 \% \end{gathered}$						
6.	Circle the LARGEST decimal fraction in the set below. 0.43 0.6 0.079 Answer: $0.43 \bigcirc 0.6079$	We en place The pl Tenths 0.43 h 0.6 h 0.079 Theref	the de ue char Tenths 0.1 value Hundre 4 tenth 6 tenth 0 tent e, 0.6 i	imal fractio as follows in order of ths, Thous S the largest.	s in a decimal ize is; dths.			
7.	Each number in the pattern below is formed by removing 1 digit from the number above it. Fill in the box to complete the pattern. Answer:		The te the nu The te the nu e, the e obta m the n	s digit is re ber directly s digit is re ber directly ext numbe ed by rem mber direc	oved from above oved from above in the pattern ving the 'tens y above, to get			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here			
				KC	AT	PS
8.	What FRACTION of the entire shape below is shaded? Answer: $\frac{5}{18}$	The entire shape is composed of shaded and un-shaded equilateral triangles. The total number of triangles, both shaded and un-shaded, in the shape is 18 The number of shaded triangles is 5 The fraction of the shape that is shown shaded $\begin{aligned} & =\frac{\text { Number of shaded triangles }}{\text { Total number of triangles }} \\ & =\frac{5}{18} \end{aligned}$				
9.	How many centimetres LONGER is John's pencil than Jeff's pencil? Answer: $\mathbf{2 . 5} \mathbf{~ c m}$	John's pencil measures 4.5 cm . Jeff's pencil measures 2 cm . John's pencil is $(4.5-2) \mathrm{cm}=2.5 \mathrm{~cm}$ longer than Jeff's pencil.				
10.	The length of the cuboid below is 10 cm . The area of the shaded face is $25 \mathrm{~cm}^{2}$. Calculate the volume of the cuboid. Answer: $\mathbf{2 5 0} \mathrm{cm}^{3}$	Volume of the cuboid $\begin{aligned} & =\text { Area of shaded face } \times \text { Length } \\ & =(25 \times 10) \mathrm{cm}^{3} \\ & =250 \mathrm{~cm}^{3} \end{aligned}$				

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
11.	The cost of a football and a cricket ball are shown below: Football Cricket ball $\$ 199.00$ $\$ 72.50$ How much MORE does the football cost than the cricket ball? Answer: \$126.50	The football costs $\$ 199.00$ The cricket ball costs $\$ 72.50$ The football costs more that the cricket ball. The football costs (\$199.00-\$72.50) more than the cricket ball. $\$ 199.00-$ \$ 72.50 $\$ 126.50$ Hence, the football costs $\$ 126.50$ more than the cricket ball.	Coser		
12.	Kyle started a test at 9:45 a.m. and finished at 11:30 a.m. How long did he take to complete the test? Answer: 1 hour 45 minutes	Finish time on test $=11: 30 \mathrm{a} . \mathrm{m}$. Start time $\quad=9: 45 \mathrm{a} . \mathrm{m}$. Time taken to complete the test is found by subtraction.			
13.	The large cube below is built with small $1 \mathrm{~cm}^{3}$ blocks. What is the volume of the cube? Answer: 64 cm 3	Each small cube has a volume of $1 \mathrm{~cm}^{3}$. The large cube has 4 small cubes along its length, 4 along its width and 4 along its height. Volume of the large cube $\begin{aligned} & =(4 \times 4 \times 4) \mathrm{cm}^{3} \\ & =64 \mathrm{~cm}^{3} \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
14.	A piece of paper in the shape of a circle has a diameter of 28 cm . The paper is folded equally 2 times to form the shape below. What is the length of the side \mathbf{a} ? Answer: 14 cm	The original circle has a diameter of 28 cm as shown: When folded once, the paper becomes semi-circular: When folded a second time, the paper becomes a quarter circle, with radius, a, a The radius of a circle is one half of the diameter The diameter of the circle $=28 \mathrm{~cm}$ The radius of the circle $=28 \div 2=14$ Length of $\mathbf{a}=14 \mathrm{~cm}$			
15.	The scale below is balanced. EACH orange weighs 120 g . What is the weight of the pineapple? Answer: 840 g	The scale is balanced with 9 oranges on one side and 2 oranges and 1 pineapple on the other side. If we remove 2 oranges from both sides of the scale, it will still be balanced. Therefore, 7 oranges are equal in weight to 1 pineapple. So, 1 pineapple weighs the same as the total weight of 7 oranges. $\begin{aligned} & =7 \times 120 \mathrm{~g} \\ & =840 \mathrm{~g} \end{aligned}$			

Section II

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
21.	Mr. Chin's supermarket has 15 rows of canned peas. Each row has 25 cans. Calculate the TOTAL number of cans of peas in the supermarket. Answer: 375 cans	$\begin{aligned} & \text { Number of rows of peas }=15 \\ & \text { Number of cans per row }=25 \\ & \text { Total number of cans } \\ & =\text { Number of rows } \times \text { Number of cans per row } \\ & =15 \times 25 \\ & =375 \end{aligned}$			
22.	Four fractions are given below. $\frac{1}{3}, \quad \frac{1}{4}, \quad \frac{5}{6}, \quad \frac{5}{12}$ Which THREE of these fractions when added result in a whole number? Answer: $\frac{1}{3}, \frac{1}{4}$ and $\frac{5}{12}$	The four given fractions are: $\frac{1}{3}, \frac{1}{4}, \frac{5}{6} \text { and } \frac{5}{12} .$ Let us consider the denominators of each fraction, these are 3, 4, 6 and 12 . A common denominator is 12 . If we express each fraction in twelfths it is easy to compare them. We take $\frac{1}{3}$ and express it as $\frac{?}{12}$. Then repeat the process for the others. $\times 4$ Similarly, $\frac{1}{4}=\frac{3}{12}(\times 3) \quad \text { and } \quad \frac{5}{6}=\frac{10}{12}(\times 2)$ So, the original fractions 1155 $\overline{3}, \frac{-}{4}, \overline{6}, \overline{12}$ can be expressed as $\frac{4}{12}, \frac{3}{12}, \frac{10}{12}, \frac{5}{12}$ To make up one whole we choose: $\frac{4}{12}+\frac{3}{12}+\frac{5}{12}=\frac{12}{12}=1$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
23.	A class is building 6 model houses with lollipop sticks. Each house requires 879 lollipop sticks. Lollipop sticks are sold in packs of 100 . How many packs of sticks are needed to build these houses? Answer: 53 packs	Number of sticks required per house $=879$ Number of houses being built $=6$ Number of sticks required $=879 \times 6=5274$ The number of packs to be bought $=5274 \div 100$ $=52$ and remainder 74 Number of packs required is 52 full packs and 74 sticks from a $53^{\text {rd }}$ pack. Number of packs of sticks required $=53$			
24.	A class has 40 students. If 16 students are boys. What PERCENTAGE of the class are girls? Answer: 60\%	Total number of students in class $=60$ Number of boys $=16$ The number of girls $=$ Total number of students - Number of boys $\begin{aligned} & =40-16 \\ & =24 \end{aligned}$ Percent of girls in the class: $\begin{aligned} & =\frac{\text { Number of girls }}{\text { Total number of students }} \times 100 \\ & =\frac{24}{40} \times 100 \\ & =60 \% \quad \text { OR } \end{aligned}$ The percent of boys in the class $\begin{aligned} & =\frac{\text { Number of boys }}{\text { Total number of students }} \times 100 \\ & =\frac{16}{40} \times 100 \\ & =40 \% \end{aligned}$ Hence the percentage that is girls $=(100-40)=60 \%$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
25.	The diagram below shows two routes that Moe can walk to get from school to home. How much longer is Route B than Route A? Answer: $1 \frac{2}{15} \mathbf{k m}$	From school to home by Route $\mathrm{A}=2 \frac{2}{3} \mathrm{~km}$ From school to home by Route $\mathrm{B}=3 \frac{4}{5}$ km . Route B is longer. Route B is longer by $\left(3 \frac{4}{5}-2 \frac{2}{3}\right) \mathrm{km}$ $\begin{aligned} & =3 \frac{4}{5}-2 \frac{2}{3} \\ & =3 \frac{12}{15}-2 \frac{10}{15} \\ & =3-2+\frac{12}{15}-\frac{10}{15} \\ & =1 \frac{2}{15} \end{aligned}$ Route B is $1 \frac{2}{15} \mathrm{~km}$ longer than Route A.			
26.	Mary has $\$ 40.00$. One half $\left(\frac{1}{2}\right)$ of Mary's money is equal to $\frac{2}{3}$ of Susie's money. a) How much money does Susie have? Answer: $\mathbf{\$ 3 0 . 0 0}$ b) How much is $\frac{3}{8}$ of Mary's money? Answer: \$15.00	a) Mary has $\$ 40.00$ $\begin{aligned} & \frac{1}{2} \text { of Mary's money }=\frac{1}{2} \times \$ 40.00 \\ & =\$ 20.00 \end{aligned}$ $\begin{aligned} \text { Two thirds of Susie's money } & =\$ 20.00 \\ \text { One third of Susie's money } & =\$ 10 \\ \text { Three thirds of Susie's money } & =\$ 10 \times 3 \\ & =\$ 30 \end{aligned}$ $\text { b) } \begin{aligned} & \frac{3}{8} \text { of Mary, } \\ = & \frac{3}{8} \times \$ 40.00 \\ = & \frac{3}{8} \times \$ 40.00 \\ = & \$ 15.00 \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
28.	A library has 1200 books. Of these, $\frac{1}{4}$ are magazines and $\frac{2}{5}$ are story books. The remainder is textbooks. a) How many magazines are there in the library? Answer: $\mathbf{3 0 0}$ magazines b) How many text books are there in the library? Answer: 420 text books	Number of books in the library $=1200$ $\frac{1}{4}$ of the books are magazines a) Number of magazines $=\frac{1}{4}$ of 1200 $=\frac{1}{4} \times 1200$ $=300$ magazines b) $\frac{2}{5}$ of the books are story books Number of story books $=\frac{2}{5} \times 1200$ $=480$ story books Number of magazines + Number of story books $=300+480=780$ Number of text books $=1200-780$ $=420$ text books OR Total fraction that comprises magazines and story books only $\begin{aligned} & =\frac{1}{4}+\frac{2}{5} \\ & =\frac{5}{20}+\frac{8}{20}=\frac{13}{20} \end{aligned}$ Fraction that comprises text books $=1-\frac{13}{20}=\frac{7}{20}$ Number of text books $\begin{aligned} & =\frac{7}{20} \times 1200 \\ & =420 \text { text books } \end{aligned}$	$\sqrt{ }$		

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
33.	A square and a rectangle are shown below. The perimeter of the square is twice the perimeter of the rectangle. a) Calculate the perimeter of the square. Answer: 48 cm b) Calculate the length of ONE side of the square. Answer: 12 cm	a) Perimeter of a rectangle $\begin{aligned} & =2(\text { Length }+ \text { Width }) \\ & =2(8+4) \mathrm{cm} \\ & =24 \mathrm{~cm} \end{aligned}$ Perimeter of the square $\begin{aligned} & =2 \times \text { Perimeter of rectangle } \\ & =2 \times 24 \mathrm{~cm} \\ & =48 \mathrm{~cm} \end{aligned}$ b) Perimeter of a square $=4 \times$ length of side Perimeter of the square $=48 \mathrm{~cm}$ Length of side of square $=\frac{48 \mathrm{~cm}}{4}$ $=12 \mathrm{~cm}$			
34.	The total mass of mangoes and oranges in a bag is 2 kg . Each orange has a mass of 50 g and each mango has a mass of 200 g . the bag contains 6 mangoes. a) Calculate the TOTAL mass of the mangoes. Answer: 1200 g b) Calculate the number of oranges in the bag. Answer: 16 oranges	a) Total mass of 6 mangoes, each of mass 200 g $\begin{aligned} & =200 \times 6 \mathrm{~g} \\ & =1200 \mathrm{~g} \end{aligned}$ b) Total mass of mangoes and oranges $\begin{aligned} & =2 \mathrm{~kg} \\ & =2 \times 1000 \mathrm{~g} \quad[1 \mathrm{~kg}=1000 \mathrm{~g}] \\ & =2000 \mathrm{~g} \end{aligned}$ The mass of oranges $\begin{aligned} & =\text { Total mass }- \text { mass of mangoes } \\ & =2000-1200 \mathrm{~g} \\ & =800 \mathrm{~g} \end{aligned}$ Each orange has a mass of 50 g . Number of oranges $\begin{aligned} & =\frac{\text { Total mass of oranges }}{\text { Mass of } 1 \text { orange }} \\ & =\frac{800 \mathrm{~g}}{50 \mathrm{~g}} \\ & =16 \text { oranges } \end{aligned}$			

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
36.	The grid below is made up of 1 cm squares. Draw an isosceles triangle with a HEIGHT of 4 cm on the grid. Answer: [Other solutions are shown in the working column]	The diagrams below each show an isosceles triangle of height 4 cm . The length of the base varies.			

Section III

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
41.	a) Street lights along a straight road are 20 m apart. What is the distance between the first street light and the tenth street light? Answer: 180 m b) A gardener decides to plant palm trees 10 m apart around a rectangular park. The park is 100 m long and 60 m wide. The diagram below shows where he digs the first and last holes for the first and last palm trees. How many palm trees does he plant ALTOGETHER? Answer: 27 trees	a) Each street light is 20 m apart. There are 9 equal distances of 20 m between the first and last street lights. Distance from the $1^{\text {st }}$ to the $10^{\text {th }}$ light: $\begin{aligned} & =20 \mathrm{~m} \times 9 \\ & =180 \mathrm{~m} \end{aligned}$ b) Observe that the number of equal distances between the first and last trees will always be one less than the number of trees. Total distance from A to D $\begin{aligned} & =100+60+100 \\ & =260 \mathrm{~m} \end{aligned}$ Plants 10 m apart The number of equal intervals of 10 m between the first and last trees is: $=\frac{260}{10}=26$ The number of trees is one more than the intervals $\begin{aligned} & =26+1 \\ & =27 \text { trees } \end{aligned}$ [Note: if the counting were done in three stages, from A to B, then B to C and then C to D, care should be taken so that trees at points B and C are not counted twice.]			

No.	TEST ITEMS
42.	The diagram below shows the number of points awarded for striking the colours on a dartboard.

a) Tommy threw darts and struck green twice and red once. What was his TOTAL score?

Answer: 70 points

b) Harry scored 100 points by striking each colour at least once. Complete the score sheet below to show how he scored the 100 points.

Colour	No. of times	Score
Blue		
Green		
Red	2	60
Total		100

Answer:

Colour	No. of times	Score
Blue	2	20
Green	1	20
Red	2	60
Total	100	

a) 2 green strikes at 20 points each, scores $20 \times 2=40$ points 1 red strike at 30 points $=30$ points
Total points scored by Tommy

$$
\begin{gathered}
=40+30 \\
=70 \text { points }
\end{gathered}
$$

b) Harry scores 100 points and strikes each colour at least once. He also scored 60 of these points by striking red twice.
Remaining points $=100-60=40$
He scored 40 points with at least one blue and one green:
1 blue +1 green
$=10+20$
$=30$ points
To score 40 points he needs to get 10 get more points, so he must strike another blue.

2 blue +1 green

$$
=2(20)+20
$$

$=40$ points
The table is complete with
2 blue strikes $=10 \times 2=20$ points
1 green strike $=20 \times 1=20$ points.
2 red strikes $=30 \times 2=60$ points
Total points obtained $=100$

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here		
			KC	AT	PS
45.	The diagram below shows a triangular prism. a) How many faces of the prism are: i. Triangular? Answer: 2 faces ii. Rectangular? Answer: 3 faces b) How many edges have a length of 45 cm ? Answer: 3 edges c) The volume of the prism is $90 \mathrm{~cm}^{3}$. It is cut into identical prisms each of volume $10 \mathrm{~cm}^{3}$. What is the length of EACH of the smaller prisms? Answer: 5 cm	a) (i) 2 triangular faces Triangular faces (ii) 3 rectangular faces Rectangular faces b) 3 edges have a length of 45 cm . Length of 45 cm c) Volume of prism $=90 \mathrm{~cm}^{3}$ Each cut prism has a volume of 10 cm^{3} $\begin{aligned} & \text { Number of prisms cut }=\frac{90 \mathrm{~cm}^{3}}{10 \mathrm{~cm}^{3}} \\ & =9 \end{aligned}$ Total length of all 9 prisms $=$ Length of the original uncut prism $=45 \mathrm{~cm}$ Length of each of the prisms cut $\begin{aligned} & =\frac{45 \mathrm{~cm}}{9} \\ & =5 \mathrm{~cm} \end{aligned}$	N		

