Mathematics - Standard III

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here
1.	Write the numeral for the number shown on the place value chart. Answer: 358	 3 sets of 100's $=3 \times 100=300$ 5 sets of 10 's $=5 \times 10=50+$ 8 ones $=8 \times 1=8$ Total $=\underline{358}$ \therefore The numeral for the number shown on the place value chart is 358.	
2.	Circle the number in which the numeral 3 has the greatest value. $7139 \quad 7139 \bigcirc 7913$ Answer:	We place the numbers on a place value chart and note their values. 3 hundreds $=300$ 3 tens $=30$ 3 ones $=3$ Since 300 is greater than 30 and also greater than 3, the number in which the numeral 3 has the greatest value is the number 7319 .	

No.	TEST ITEMS	WORKING COLUMN	$\begin{aligned} & \text { Do } \\ & \text { Not } \\ & \text { Write } \\ & \text { Here } \end{aligned}$
3.	In a game the player closest to 1000 points wins a prize. Who won the prize? Answer: Marlon	Ravi's score: Difference between Ravi's score and $1000=1040-1000=40$ Marlon's score: Difference between Marlon's score and $1000=1000-985=15$ Alex's score: Difference between Alex's score and $1000=1000-950=50$ The smallest number among these differences of 40,15 and 50 is 15. \therefore The score closest to 1000 is Marlon's score of 985 \therefore Marlon would have won the prize.	

No.	TEST ITEMS	WORKING COLUMN	$\begin{aligned} & \text { Do } \\ & \text { Not } \\ & \text { Write } \\ & \text { Here } \end{aligned}$
4.	Circle two numbers that add up to an even number that is greater than 25. 11 12 13 14 Answer: 11 (12) 13 (14)	The available numbers are $11,12,13$ and 14. Two numbers whose sum is even are Either both are odd or both are even. The numbers can be $11+13=24 \text { or } 12+14=26$ But the sum must be greater than 25 . The numbers could only be 12 and 14. $12+14=26$. This total is both greater than 25 and is an even number, since it is divisible by 2 .	
5.	Sasha has a bar of chocolate with 12 blocks. She gave 2 blocks to her sister and 3 blocks to her brother. With what fraction of the bar was she left? Answer: $\frac{7}{12}$	Sasha's bar of 12 chocolate blocks Sasha gave away: 2 blocks to her sister 3 blocks to her brother The total number of blocks given away $=2+3=5$ Number of blocks remaining$=12-5=7$ Hence, the fraction of the chocolate bar that Sasha has left $=\frac{7}{12}$	

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here
6.	Circle the two fractions that are equivalent. $\frac{6}{15} \quad \frac{10}{15} \quad \frac{8}{20} \quad \frac{15}{20}$ Answer: $\left(\frac{6}{15} \frac{10}{15} \frac{8}{20} \frac{15}{20}\right.$	The fractions cannot be compared unless they are expressed in the same denominator. The smallest number that is a multiple of both 15 and 20 is 60 . So, we express all the fractions using 60 as the denominator: $\underbrace{\frac{10}{15}=\frac{40}{60}}_{x 4}$ Notice the fractions $\frac{6}{15}$ and $\frac{8}{20}$ are both equal to $\frac{24}{60}$. Hence, the only two equivalent fractions from among the four fractions given are $\frac{6}{15}$ and $\frac{8}{20}$.	

\begin{tabular}{|c|c|c|c|}
\hline No. \& TEST ITEMS \& WORKING COLUMN \& \begin{tabular}{l}
Do \\
Not \\
Write \\
Here
\end{tabular} \\
\hline 7. \& \begin{tabular}{l}
A bus holds 145 passengers when full. \\
How many passengers can be transported in 13 similar buses? \\
Answer: 1885 passengers
\end{tabular} \& 1 full bus holds \(=145\) passengers 13 full buses will hold \(=145 \times 13\) passengers \& \\
\hline 8.
a.

a.

b. \& | 253 toy trucks were packed into boxes. |
| :--- |
| Each box can hold 8 toy trucks. |
| How many boxes were completely filled? |
| Answer: 31 boxes |
| How many toy trucks were left over? | \& a. 1 box holds 8 toy trucks 10 boxes will hold $8 \times 10=80$ trucks Fill 10 boxes at a time and check 10 boxes hold 80 , total filled is 80 10 boxes hold 80 , total filled is 160 10 boxes hold 80 , total filled is 240 1 box will hold 8 , total filled is 248 So, $10+10+10+1=31$ boxes will be completely filled. \&

\hline \& \& \&

\hline
\end{tabular}

Maths

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here
12.	What is the area of the shaded part of the figure? \square $=1$ square unit Answer: 5 square units.	The entire rectangular figure is divided into 12 smaller squares. Each small square is of area 1 square unit. Two of the squares are divided into two equal triangles. The area of these triangles is one half of a square unit. The area of the shaded part of the figure = Area of the 4 fully shaded squares + Area of the 2 shaded triangles $=4+\frac{1}{2}+\frac{1}{2}$ square units $=4+1$ square units $=5$ square units	

No.	TEST ITEMS	WORKING COLUMN	Do Writ Here
13.	Each square on the grid is one 1 unit in length. Draw a rectangle with a perimeter of 18 units.	There are several rectangles that can be drawn whose perimeter is 18 units. The perimeter of a rectangle $=2 \times$ (Length + Width $)$ $2 \times(\text { Length }+ \text { Width })=18 \text { units }$ $\text { Therefore (Length }+ \text { Width) }=\frac{18}{2}$ $=9 \text { units }$ Taking any two whole numbers that have a sum of 9 , we have the following possibilities: Rectangles drawn with the above dimensions will have a perimeter of 18 units. One such rectangle is drawn on the grid provided. The rectangle chosen to be drawn is 2 units in width by 7 units in length, as shown.	

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here
14.	Three children threw coins while playing a game. The lines A, B and C below represent the distances thrown by Annie, Betty and Candy.	a. Annie threw the coin from the 15 cm mark to the 40 cm mark. Annie's distance: $A=25 \mathrm{~cm}$. Betty threw the coin from the 0 cm mark to the 20 cm mark. Betty's distance: $B=20 \mathrm{~cm}$	
a.	Order the line A, B and C from the shortest to longest by writing the letters in the boxes. Shortest Longest Answer:	Candy threw the coin from the 15 cm mark to the 30 cm mark. Candy's distance: $C=15 \mathrm{~cm}$ The distances from shortest to longest are: $15 \quad 20 \quad 25$	
b.	What is the approximate length of line A? Answer: $\mathbf{2 5} \mathrm{cm}$	b. The approximate length of line A is 25 cm , as obtained before, in part (a).	

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here
16.	Amrit is a daily paid worker. He works for $\$ 75.00$ each day. a. Calculate his pay for the month of April if he works for 12 days. Answer: \$900 b. In the month of May, he earned $\$ 750.00$. How many days did he work in May? Answer: 10 days c. In the month of June his earnings was twice as much as his earnings in May. How many days did he work in June? Answer: 20 days	a. Amrit's pay for 1 day is $\$ 75.00$. Amrit's pay for 12 days would be $\begin{aligned} & \$ 75 \times 12 \\ & =\$ 75 \times 10+\$ 75 \times 2 \\ & =\$ 750+\$ 150 \\ & =\$ 900 \end{aligned}$ b. In May, Amrit worked for $\$ 750.00$. The number of days that Amrit worked $\begin{aligned} & =\frac{\text { Total earnings }}{\text { Pay per day }} \\ & =\frac{\$ 750}{\$ 75}=10 \end{aligned}$ c. Amrit's earnings in May $=\$ 750$ His earnings in June $=2 \times$ earnings in May $=\$ 750 \times 2=\$ 1500$ \therefore The number of days Amrit worked in June $\begin{aligned} & =\frac{\text { Total earnings in June }}{\text { Daily wage }} \\ & =\frac{\$ 1500}{\$ 75}=20 \end{aligned}$ OR If Amrit worked for 10 days in May and in June he worked for twice the salary, then he would have worked for twice the number of days in June. $=10$ days $\times 2=20$ days	

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here
18.	Sameer made the frame of a solid using straws and plasticine. He used 12 straws of the same length for the edges. Name the solid Sameer made. Answer: Cube	If the 12 straws used are of the same length, he made a cube. There are 4 edges om the base 4 edges on the top and 4 vertical edges. The shape of the solid is a cube, as shown above.	
19.	Alicia's bedroom window has the following pattern. Draw the image of Alicia's window when flipped about the mirror line.	The image of the window is obtained by flipping the object on the mirror line.	

\begin{tabular}{|c|c|c|c|}
\hline No. \& TEST ITEMS \& WORKING COLUMN \& \begin{tabular}{l}
Do \\
Not \\
Write \\
Here
\end{tabular} \\
\hline 20. \& Complete the table below. \& The lines of symmetry of the objects are shown dotted. When the object is folded along its line of symmetry there is no over-lapping. \& \\
\hline \begin{tabular}{l}
21. a. \\
b.
\end{tabular} \& \begin{tabular}{l}
Shade all the plane shapes that are faces of a triangular prism.
\(\square\) \(\triangle\) \(\square\) \(\triangle\) \(\square\) \(\bigcirc\)
\(\square\)

\square
\square Δ

Draw the net of the triangular prism.

 \&

a. A triangular prism has 3 rectangular faces. 2 triangular faces.

We shade as shown:
\square \triangle \square
\bigcirc
\square \bigcirc \square

\triangle

b. The net is the flat shape that will form the prism, when folded:
\end{tabular} \&

\hline
\end{tabular}

No.	TEST ITEMS	WORKING COLUMN	Do Not Write Here
25.	The bar graph below represents the number of marbles Jevon lost in a week. Marbles Lost by Jevon	a. The same number of marbles was lost on the days that correspond to bars that are of the same height. These days therefore, could only be Tuesday and Friday. b. Number of marbles lost on: Monday $=4$ Tuesday $=7$ Wednesday $=15+$ Thursday $=12$ Friday $=\underline{7}$ Hence, total lost $=\underline{45}$ c. At the start of the week the number of marbles Jevon had $=75$ The total number of marbles lost $=45$ The number of marbles Jevon had at the end of the week $=$ The number he had at the start - The number that he lost $=75-45$ $=30$	
a.	On which two days did Jevon lose the same number of marbles? Answer: Tuesday and Friday		
b.	How many marbles did he lose in all?		
c.	Answer: 45 marbles At the beginning of the week, Jevon had 75 marbles. How many marbles did Jevon have at the end of the week?		

