NCSE 2018 PAPER II

SECTION I

1. (a) Required to calculate: $3 \frac{3}{4} \div \frac{5}{8}$

Calculation:

$$
\begin{aligned}
3 \frac{3}{4} \div \frac{5}{8} & =\frac{(4 \times 3)+3}{4} \div \frac{5}{8} \\
& =\frac{15}{4} \div \frac{5}{8} \\
& =\frac{315}{{ }_{1} 4} \times \frac{8^{2}}{\not p_{1}} \\
& =\frac{6}{1} \\
& =6 \text { (in exact form) }
\end{aligned}
$$

(b) Required to convert: $\frac{5}{8}$ to a percent

Solution:

$\frac{5}{8}$ as a percent $=\frac{5}{8} \times 100$

$$
=\frac{500}{8}
$$

$$
=\frac{125}{2}
$$

$$
=62.5 \%
$$

(c) Required to express: 6489 in standard form

Solution:
6489
We shift the decimal point 3 places to the left
Hence, 6489. $=6.489 \times 10^{3}$
This may be approximated to 6.49×10^{3} or even to 6.5×10^{3}.
2. Data: Of the 40 students in a class, 14 study French only, 8 study both Spanish and French, 21 study Spanish and 5 students study neither of the two subjects.
(a) Required to complete: The Venn diagram given to show the information. Solution:
We assume $F=\{$ Students who study French $\}$ and $S=\{$ Students who study Spanish $\}$.

(b) Required to find: The number of students who study one language Solution:
The number of students who study Spanish $=21$
8 of these students study French as well.
\therefore The number of students who study Spanish only $=21-8$

$$
=13
$$

So, the number who study French only and Spanish only $=14+13$

$$
=27
$$

(c) Required to find: The probability that a student chosen at random studies both French and Spanish.

Solution:

P(Student studies both French and Spanish)
$=\frac{\text { No. of students who study both French and Spanish }}{\text { Total no. of students }}$
$=\frac{8}{40}$
$=\frac{1}{5}$
(This may be written as $\frac{1}{5}$ or 0.2 or 20%.)
3. (a) Required to simplify: $3(x-2)$

Solution:
$3(x-2)=3 x-6$
(b) Required to solve: $6 x-8=16+2 x$

Solution:

$$
\begin{aligned}
6 x-2 x & =16+8 \\
4 x & =24 \\
x & =\frac{24}{4} \\
x & =6
\end{aligned}
$$

(c) Data: Diagram showing rectangle $A B C D$, with length twice its width and a perimeter of 18 cm .

Required to calculate: x

Calculation:

The perimeter $=18 \mathrm{~cm}$
Hence, $2 x+x+2 x+x=18$
$6 x=18$

$$
x=\frac{18}{6}
$$

$$
x=3 \mathrm{~cm}
$$

4. Data: Diagrams showing the dimensions of packages in which cookies are placed and the boxes they were packed in for shipping.

Package

(a) Required to calculate: The volume of the package Calculation:
Volume of the package $=5 \times 5 \times 10 \mathrm{~cm}^{3}$
(b) Required to find: The number of packages required to completely fill the box. Solution:
The number of packages that will completely fill the box
$=\frac{\text { Volume of the box }}{\text { Volume of } 1 \text { package }}$
$=\frac{50 \times 30 \times 10 \mathrm{~cm}^{3}}{5 \times 5 \times 10 \mathrm{~cm}^{3}}$
$=60$ packages
(c) Required to convert: The volume of a box from cubic centimetres to cubic metres.

Solution:

Volume of the box $=50 \times 30 \times 10 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& =\frac{50}{100} \times \frac{30}{100} \times \frac{10}{100} \mathrm{~m}^{3} \\
& =0.5 \times 0.3 \times 0.1 \mathrm{~m}^{3} \\
& =0.015 \mathrm{~m}^{3} \text { or } 1.5 \times 10^{-2} \mathrm{~m}^{3}
\end{aligned}
$$

5. Data: Graph showing triangle $X Y Z$.

FAS-PASS
Maths
(a) Required to state: The coordinates of X, Y and Z Solution:

$$
X(1,2) \quad Y(3,4) \quad Z(2,1)
$$

(b) Required to draw: Triangle $X^{\prime} Y^{\prime} Z^{\prime}$ the reflection of triangle $X Y Z$ in the y-axis. Solution:

(c) Data: Graph showing triangles $X Y Z$ and $X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$.

Required to describe: The transformation which maps $\triangle X Y Z$ unto $\Delta X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$.' Solution:

Each point on $\triangle X Y Z$ is shifted 5 units vertically downwards. There is no horizontal shift. Hence, the translation, $T=\binom{-5}{0}$.
So, $\triangle X Y Z \xrightarrow{T=\binom{-5}{0}} \Delta X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$.
6. (a) Data: Table showing the preferred ice cream flavours of 30 students in a class.

Preferred Flavour	No. of Students
Chocolate	4
Vanilla	8
Cherry	
Kiwi	2
Pistachio	6

Required to complete: The table given.
Solution:
$4+8+$ No. who chose cherry $+2+6=30$

$$
\begin{aligned}
\therefore \text { No. who chose cherry } & =30-(4+8+2+6) \\
& =30-20 \\
& =10
\end{aligned}
$$

The completed table looks like:

Preferred Flavour	No. of Students
Chocolate	4
Vanilla	8
Cherry	10
Kiwi	2
Pistachio	6

(b) Required to find: The flavor preferred by $\frac{1}{5}$ of the students in the class.

Solution:

Total number of students in the class $=30$

$$
\begin{aligned}
\frac{1}{5} \text { of } 30 & =\frac{1}{5} \times 30 \\
& =6
\end{aligned}
$$

Pistachio was preferred by 6 students. So, pistachio was preferred by $\frac{1}{5}$ of the students in the class.
(c) (i) Required to state: The least liked flavor.

Solution:

The lowest number in the column for number of students is 2 which corresponds to the flavour of kiwi.
Hence, kiwi is the least liked flavour.
(ii) Required to state: The modal flavour Solution:
The highest number in the column for number of students is 10 which corresponds to cherry.
Hence, the modal flavour is cherry.

SECTION II

7. (a) Data: A list of items and their prices that Mary purchased.
Item Cost

Dress $\quad \$ 90.00$
Shoes $\quad \$ 120.00$
Pants $\quad \$ 100.00$
V.A.T. is charged at a rate of 12.5%.
(i) Required to calculate: Mary's bill without V.A.T. Calculation:
Mary's bill exclusive of V.A.T. $=\$ 90.00$

$$
\begin{aligned}
& \$ 120.00+ \\
& \$ 100.00 \\
& \$ 310.00
\end{aligned}
$$

(ii) Required to calculate: Mary's bill with V.A.T.

Calculation:
V.A.T. $=12.5 \%$ of $\$ 310.00$
$=\frac{12.5}{100} \times \$ 310.00$

$$
=\$ 38.75
$$

Hence, Mary's bill inclusive of V.A.T. $=\$ 310.00+\$ 38.75$

$$
=\$ 348.75
$$

(iii) Data: US $\$ 1.00=$ TT $\$ 6.80$

Required to find: The amount of US\$ Sita receives if she converts
TT \$3400
Solution:
TT $\$ 6.80=$ US $\$ 1.00$

Hence, TT $\$ 1.00 \equiv$ US $\$ \frac{1.00}{6.80}$
For TT $\$ 3400$, the equivalent in US $\$$ is $\$ \frac{1.00}{6.80} \times 3400=$ US $\$ 500$
(b) (i) Required to construct: Triangle $A B C$ with $A B=9 \mathrm{~cm}$, angle $A B C=90^{\circ}$ and $B C=6 \mathrm{~cm}$.
Construction: The construction is shown in steps to assist the reader.

A	9 cm	B

(ii) Required to state: The size of angle $B A C$ by measurement.

Solution:

$B \hat{A} C=34^{\circ}$ (by measurement)
8. (a) Data: Diagram showing dimensions of a boat.

(i) Required to find: The height of the mast AB . Solution:

$$
\begin{aligned}
\mathrm{AB}^{2}+(12)^{2} & =(20)^{2} \quad \text { (Pythagoras' Theorem) } \\
\therefore \mathrm{AB}^{2} & =(20)^{2}-(12)^{2} \\
& =400-144 \\
& =256 \\
\mathrm{AB} & =\sqrt{256} \\
& =16 \mathrm{~m}
\end{aligned}
$$

(ii) Required to find: The length of BC , correct to the nearest metre. Solution:

$$
\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2} \quad(\text { Pythagoras' Theorem })
$$

$$
\begin{aligned}
\therefore \mathrm{BC}^{2} & =(16)^{2}+(19)^{2} \\
& =256+361 \\
& =617 \\
\mathrm{BC} & =\sqrt{617} \\
& =24.8 \mathrm{~m} \\
& \approx 25 \mathrm{~m} \text { to the nearest metre }
\end{aligned}
$$

(b) Data: Diagram showing a park in the shape of a rectangle with semi-circular ends.

(i) Required to calculate: The perimeter of the park. Calculation:

Perimeter of the park
$=80 \mathrm{~m}+$ length of semi-circle $B C D+80 \mathrm{~m}+$ length of semi-circle $E F A$
$=80+\frac{1}{2}\left(2 \pi \times \frac{140}{2}\right)+80+\frac{1}{2}\left(2 \pi \times \frac{140}{2}\right) m$
$=80+(\pi \times 70)+80+(\pi \times 70)$
$=80+\left(\frac{22}{7} \times 70\right)+80+\left(\frac{22}{7} \times 70\right)$
$=80+220+80+220$
$=600 \mathrm{~m}$
(ii) Required to express: The perimeter of the park in kilometres. Solution:
$1000 \mathrm{~m}=1 \mathrm{~km}$

$$
\begin{aligned}
1 \mathrm{~m} & =\frac{1}{1000} \mathrm{~km} \\
\therefore 600 \mathrm{~m} & =\frac{1}{1000} \times 600 \mathrm{~km} \\
& =0.6 \mathrm{~km}
\end{aligned}
$$

(iii) Data: Joshua takes 10 minutes to ride around the track.

Required to calculate: Joshua's speed in kmh^{-1}.
Calculation:
Average speed $=\frac{\text { Total distance covered }}{\text { Total time taken }}$

$$
\begin{aligned}
& =\frac{0.6 \mathrm{~km}}{\frac{10}{60} \text { hours }} \\
& =0.6 \times 6 \mathrm{kmh}^{-1} \\
& =3.6 \mathrm{kmh}^{-1}
\end{aligned}
$$

9. (a) Data: Joanne bought 2 pieces of chicken and 3 portions of fries for $\$ 69.00$ and Malika purchased 1 piece of chicken and 4 portions of fries for $\$ 72.00$. $\$ x$ represents the cost of 1 piece of chicken and $\$ y$ represents the cost of 1 portion of fries.
(i) Required to write: Two equations, in terms of x and y, to represent the information given.

Solution:

Joanne
2 pieces of chicken at $\$ x$ each and 3 portions of fries at $\$ y$ each cost $\$ 69$.

$$
\begin{align*}
\therefore(2 \times x)+(3 \times y) & =69 \\
2 x+3 y & =69 \tag{1}
\end{align*}
$$

Malika
1 piece of chicken at $\$ x$ each and 4 portions of fries at $\$ y$ each cost $\$ 72$.

$$
\begin{align*}
\therefore(x \times 1)+(y \times 4) & =72 \\
x+4 y & =72
\end{align*}
$$

(ii) Required to find: The cost of one piece of chicken and one portion of fries.

Solution:

$$
x+4 y=72 \quad \ldots \text { 2 }
$$

Equation 2×-2 :
$-2 x-8 y=-144$
Equation (1) Equation (3:

$$
2 x+3 y=69
$$

$$
-2 x-8 y=-144
$$

$$
-5 y=-75
$$

$$
y=\frac{-75}{-5}
$$

$$
y=15
$$

Substitute $y=15$ into equation (2):

$$
\begin{aligned}
x+4(15) & =72 \\
x & =72-60 \\
& =12
\end{aligned}
$$

Hence, the cost of 1 piece of chicken $=\$ 12$ and the cost of 1 portion of fries $=\$ 15$.
(b) (i) Required to complete: Mapping diagram given for the relation $f: x \rightarrow 2 x-1$

Solution:

$$
f: x \rightarrow 2 x-1
$$

$f: 2 \rightarrow 2(2)-1=4-1=3$
$f: 3 \rightarrow 2(3)-1=6-1=5$
The completed mapping diagram looks like:

$$
x \rightarrow 2 x-1
$$

(ii) Required to plot: The graph of $y=2 x-1$ using the mapping of $x \rightarrow 2 x-1$.

Solution:

(ii) Required to draw: The line parallel to $y=2 x-1$ which passes through the origin on the same axes.

Solution:

$y=2 x-1$ is of the form $y=m x+c$, where $m=2$ is the gradient and $c=-1$ is the intercept on the $y-$ axis.
Hence, if the line passes through O and is parallel to $y=2 x-1$, its equation is $y=2 x+0$.
The gradient $=2$ since parallel lines have the same gradient.
$y=2 x$
When $x=0: y=2(0)=0$
When $x=2: y=2(2)=4$

\boldsymbol{x}	\boldsymbol{y}
0	0
2	4

We plot $(0,0)$ and $(2,4)$, extending it to any desired length.

