NCSE 2018 PAPER II

SECTION I

Required to calculate: $3\frac{3}{4} \div \frac{5}{8}$ 1. (a)

Calculation:

$$3\frac{3}{4} \div \frac{5}{8} = \frac{(4 \times 3) + 3}{4} \div \frac{5}{8}$$

$$= \frac{15}{4} \div \frac{5}{8}$$

$$= \frac{\cancel{3}\cancel{15}}{\cancel{14}} \times \frac{\cancel{8}^2}{\cancel{5}_1}$$

$$= \frac{6}{1}$$

$$= 6 \text{ (in exact form)}$$

Required to convert: $\frac{5}{8}$ to a percent **(b)**

Solution:

$$\frac{5}{8} \text{ as a percent} = \frac{5}{8} \times 100$$
$$= \frac{500}{8}$$
$$= \frac{125}{2}$$
$$= 62.5\%$$

Required to express: 6489 in standard form (c)

Solution:

We shift the decimal point 3 places to the left

Hence, $6489 = 6.489 \times 10^3$

This may be approximated to 6.49×10^3 or even to 6.5×10^3 .

- 2. Data: Of the 40 students in a class, 14 study French only, 8 study both Spanish and French, 21 study Spanish and 5 students study neither of the two subjects.
 - **Required to complete:** The Venn diagram given to show the information. (a) **Solution:**

We assume $F = \{ \text{Students who study French} \}$ and

 $S = \{ \text{Students who study Spanish} \}.$

FAS-PASS Maths

(b) Required to find: The number of students who study one language Solution:

The number of students who study Spanish = 21

8 of these students study French as well.

∴ The number of students who study Spanish only = 21-8

So, the number who study French only and Spanish only = 14+13- 27

(c) Required to find: The probability that a student chosen at random studies both French and Spanish.

Solution:

P(Student studies both French and Spanish)

No. of students who study both French and Spanish

Total no. of students

$$=\frac{8}{40}$$
$$=\frac{1}{40}$$

(This may be written as $\frac{1}{5}$ or 0.2 or 20%.)

3. (a) Required to simplify: 3(x-2)

Solution:

$$3(x-2) = 3x - 6$$

(b) Required to solve: 6x-8=16+2xSolution:

$$6x - 8 = 16 + 2x$$

$$6x - 2x = 16 + 8$$
$$4x = 24$$
$$x = \frac{24}{4}$$
$$x = 6$$

(c) Data: Diagram showing rectangle *ABCD*, with length twice its width and a perimeter of 18 cm.

Required to calculate: x

Calculation:

The perimeter = 18 cm
Hence,
$$2x + x + 2x + x = 18$$

 $6x = 18$

$$x = \frac{18}{6}$$

$$x = 3 \text{ cm}$$

4. Data: Diagrams showing the dimensions of packages in which cookies are placed and the boxes they were packed in for shipping.

(a) Required to calculate: The volume of the package Calculation:

Volume of the package = $5 \times 5 \times 10 \text{ cm}^3$

$$= 250 \text{ cm}^3$$

(b) Required to find: The number of packages required to completely fill the box. Solution:

The number of packages that will completely fill the box

$$= \frac{\text{Volume of the box}}{\text{Volume of 1 package}}$$

$$=\frac{50\times30\times10~\text{cm}^3}{5\times5\times10~\text{cm}^3}$$

- = 60 packages
- **(c)** Required to convert: The volume of a box from cubic centimetres to cubic metres.

Solution:

Volume of the box =
$$50 \times 30 \times 10 \text{ cm}^3$$

= $\frac{50}{100} \times \frac{30}{100} \times \frac{10}{100} \text{ m}^3$
= $0.5 \times 0.3 \times 0.1 \text{ m}^3$
= $0.015 \text{ m}^3 \text{ or } 1.5 \times 10^{-2} \text{ m}^3$

5. Data: Graph showing triangle *XYZ*.

(a) Required to state: The coordinates of X, Y and Z Solution:

X(1,2) Y(3,4) Z(2,1)

(b) Required to draw: Triangle XYZ' the reflection of triangle XYZ in the y – axis. Solution:

(c) **Data:** Graph showing triangles XYZ and X''Y''Z''.

Required to describe: The transformation which maps ΔXYZ unto $\Delta X''Y''Z''$.' **Solution:**

Each point on $\triangle XYZ$ is shifted 5 units vertically downwards. There is no horizontal shift. Hence, the translation, $T = \begin{pmatrix} -5 \\ 0 \end{pmatrix}$.

So,
$$\Delta XYZ \xrightarrow{T = \begin{pmatrix} -5 \\ 0 \end{pmatrix}} \Delta X''Y''Z''$$
.

6. (a) Data: Table showing the preferred ice cream flavours of 30 students in a class.

Preferred Flavour	No. of
	Students
Chocolate	4
Vanilla	8
Cherry	
Kiwi	2
Pistachio	6

Required to complete: The table given.

Solution:

$$4+8+$$
 No. who chose cherry $+2+6=30$

∴ No. who chose cherry =
$$30 - (4 + 8 + 2 + 6)$$

= $30 - 20$

The completed table looks like:

Preferred Flavour	No. of
	Students
Chocolate	4
Vanilla	8
Cherry	10
Kiwi	2
Pistachio	6

(b) Required to find: The flavor preferred by $\frac{1}{5}$ of the students in the class.

Solution

Total number of students in the class = 30

$$\frac{1}{5}$$
 of $30 = \frac{1}{5} \times 30$
= 6

Pistachio was preferred by 6 students. So, pistachio was preferred by $\frac{1}{5}$ of the students in the class.

(c) (i) Required to state: The least liked flavor.

Solution:

The lowest number in the column for number of students is 2 which corresponds to the flavour of kiwi. Hence, kiwi is the least liked flavour.

(ii) Required to state: The modal flavour Solution:

The highest number in the column for number of students is 10 which corresponds to cherry.

Hence, the modal flavour is cherry.

SECTION II

7. (a) Data: A list of items and their prices that Mary purchased.

Item	Cost
Dress	\$90.00
Shoes	\$120.00
Pants	\$100.00

V.A.T. is charged at a rate of 12.5%.

(i) Required to calculate: Mary's bill without V.A.T.

Calculation:

Mary's bill exclusive of V.A.T. =
$$$90.00$$

 $$120.00 + \frac{$100.00}{$310.00}$

(ii) Required to calculate: Mary's bill with V.A.T.

Calculation:

V.A.T. =
$$12.5\%$$
 of \$310.00
= $\frac{12.5}{100} \times 310.00
= $$38.75$

(iii) **Data:** US \$1.00 = TT \$6.80

Required to find: The amount of US\$ Sita receives if she converts

TT \$3 400 **Solution:**

TT \$6.80 = US \$1.00

Hence, TT1.00 = US$\frac{1.00}{6.80}$

For TT\$3400, the equivalent in US\$ is $\$\frac{1.00}{6.80} \times 3400 = US500

(b) (i) Required to construct: Triangle ABC with AB = 9 cm, angle $ABC = 90^{\circ}$ and BC = 6 cm.

Construction: The construction is shown in steps to assist the reader.

9 cm

(ii) Required to state: The size of angle *BAC* by measurement.

Solution:

$$\hat{BAC} = 34^{\circ}$$
 (by measurement)

8. (a) Data: Diagram showing dimensions of a boat.

(i) Required to find: The height of the mast AB. Solution:

$$AB^{2} + (12)^{2} = (20)^{2}$$
 (Pythagoras' Theorem)

$$\therefore AB^{2} = (20)^{2} - (12)^{2}$$

$$= 400 - 144$$

$$= 256$$

$$AB = \sqrt{256}$$

$$= 16 \text{ m}$$

(ii) Required to find: The length of BC, correct to the nearest metre. Solution:

$$BC^2 = AB^2 + AC^2$$
 (Pythagoras' Theorem)

FAS-PASS Maths

$$\therefore BC^{2} = (16)^{2} + (19)^{2}$$

$$= 256 + 361$$

$$= 617$$

$$BC = \sqrt{617}$$

$$= 24.8 \text{ m}$$

$$\approx 25 \text{ m to the nearest metre}$$

(b) Data: Diagram showing a park in the shape of a rectangle with semi-circular ends.

(i) Required to calculate: The perimeter of the park. Calculation:

Perimeter of the park
= 80 m + length of semi-circle
$$BCD + 80$$
 m + length of semi-circle EFA
= $80 + \frac{1}{2} \left(2\pi \times \frac{140}{2} \right) + 80 + \frac{1}{2} \left(2\pi \times \frac{140}{2} \right) m$

$$= 80 + \left(\frac{22}{7} \times 70\right) + 80 + \left(\frac{22}{7} \times 70\right)$$

 $= 80 + (\pi \times 70) + 80 + (\pi \times 70)$

$$=80+220+80+220$$

$$= 600 \text{ m}$$

(ii) Required to express: The perimeter of the park in kilometres. Solution:

1000 m = 1 km
1 m =
$$\frac{1}{1000}$$
 km
∴ 600 m = $\frac{1}{1000}$ × 600 km
= 0.6 km

(iii) Data: Joshua takes 10 minutes to ride around the track.

Required to calculate: Joshua's speed in kmh⁻¹.

Calculation:

Average speed =
$$\frac{\text{Total distance covered}}{\text{Total time taken}}$$

= $\frac{0.6 \text{ km}}{\frac{10}{60} \text{ hours}}$
= $0.6 \times 6 \text{ kmh}^{-1}$
= 3.6 kmh^{-1}

- 9. (a) Data: Joanne bought 2 pieces of chicken and 3 portions of fries for \$69.00 and Malika purchased 1 piece of chicken and 4 portions of fries for \$72.00. \$x represents the cost of 1 piece of chicken and \$y\$ represents the cost of 1 portion of fries.
 - **(i)** Required to write: Two equations, in terms of *x* and *y*, to represent the information given.

Solution:

Joanne

2 pieces of chicken at x each and 3 portions of fries at y each cost 69.

$$\therefore (2 \times x) + (3 \times y) = 69$$
$$2x + 3y = 69 \qquad \dots$$

Molileo

1 piece of chicken at x each and 4 portions of fries at y each cost 72.

$$\therefore (x \times 1) + (y \times 4) = 72$$
$$x + 4y = 72 \qquad \dots 2$$

(ii) Required to find: The cost of one piece of chicken and one portion of fries.

Solution:

$$2x + 3y = 69$$
 ... 0

FAS-PASS Maths

$$x + 4y = 72$$
 ... 2

Equation
$$2 \times -2$$
:

$$-2x - 8y = -144$$
 ... **3**

Equation **1** + Equation **3**:

$$2x + 3y = 69$$

$$-2x - 8y = -144$$

$$-5y = -75$$

$$y = \frac{-75}{-5}$$

$$y = 15$$

Substitute y = 15 into equation **2**:

$$x + 4(15) = 72$$

$$x = 72 - 60$$

$$=12$$

Hence, the cost of 1 piece of chicken = \$12 and the cost of 1 portion of fries = \$15.

(b) (i) Required to complete: Mapping diagram given for the relation

$$f: x \rightarrow 2x-1$$

Solution:

$$f: x \to 2x-1$$

$$f: 2 \to 2(2)-1=4-1=3$$

$$f: 3 \to 2(3)-1=6-1=5$$

The completed mapping diagram looks like:

$x \rightarrow 2x-1$

(ii) Required to plot: The graph of y = 2x - 1 using the mapping of $x \rightarrow 2x - 1$.

Solution:

(ii) Required to draw: The line parallel to y = 2x - 1 which passes through the origin on the same axes.

Solution:

y = 2x - 1 is of the form y = mx + c, where m = 2 is the gradient and c = -1 is the intercept on the y - axis.

Hence, if the line passes through O and is parallel to y = 2x - 1, its equation is y = 2x + 0.

The gradient = 2 since parallel lines have the same gradient. y = 2x

When
$$x = 0$$
: $y = 2(0) = 0$

When
$$x = 2$$
: $y = 2(2) = 4$

x	у
0	0
2	4

We plot (0, 0) and (2, 4), extending it to any desired length.

