NCSE 2017 PAPER II

SECTION I

1. (a) Required to calculate: $3 \frac{1}{8}-2 \frac{1}{2}$

Calculation:

$$
\begin{aligned}
3 \frac{1}{8}-2 \frac{1}{2} & =\frac{25}{8}-\frac{5}{2} \\
& =\frac{1(25)-4(5)}{8} \\
& =\frac{25-20}{8} \\
& =\frac{5}{8}(\text { as a fraction })
\end{aligned}
$$

(b) Required to calculate: $(2.38+0.22)+(0.33)^{2}$

Calculation:

$$
\begin{aligned}
(2.38+0.22)+(0.33)^{2} & =2.6+0.1089 \text { (By the calculator) } \\
& =2.7089 \\
& =2.71 \text { (correct to } 2 \text { decimal places })
\end{aligned}
$$

2. Data: Results of a survey conducted on 40 students to find out whether they used Digicel (D) or Bmobile (B) phones to make calls. 20 students used Bmobile phones. $5 x$ students used Digicel phones only. x students used both Bmobile and Digicel phones. 5 students did not use either Bmobile or Digicel phones.
(a) Required to complete: A Venn diagram for the information given.

Solution:

(b) Required to write: An expression, in terms of x, to represent the total number of students in the survey.

Solution:

The total number of students in the survey is the sum of the numbers in all the subsets of the Universal set.
Total number of students in the survey $=20-x+x+5 x+5$

$$
=25+5 x
$$

(c) Required to find: The value of x.

Solution:

$n(U)=40$
Hence, $25+5 x=40$

$$
5 x=40-25
$$

$5 x=15$
$x=\frac{15}{5}$
$x=3$
3. (a) (i) Required to simplify: $6 m-2 n+m+4 n$ Solution:

$$
\begin{aligned}
6 m-2 n+m+4 n & =6 m+m-2 n+4 n \\
& =7 m+2 n
\end{aligned}
$$

(ii) Required to solve: $4 x+3=15$

Solution:

$$
\begin{aligned}
4 x+3 & =15 \\
4 x & =15-3 \\
4 x & =12 \\
x & =\frac{12}{4} \\
x & =3
\end{aligned}
$$

(b) (i) Required to factorise: $4 p+20$

Solution:

$$
\begin{aligned}
4 p+20 & =\underset{=}{\mathbf{4}} \times p+\underset{\underline{\mathbf{4}} \times 5}{=} \\
& =4(p+5)
\end{aligned}
$$

(ii) Required to factorise: $x^{2}-25 y^{2}$

Solution:

$x^{2}-25 y^{2}=(x)^{2}-(5 y)^{2}$
This is in the form of a difference of two squares:
So $x^{2}-25 y^{2}=(x-5 y)(x+5 y)$
4. Data: Diagrams showing two fish tanks A and B with dimensions at Valley Line Zoo. Tank A is kept filled to maximum capacity.

Tank A

Tank B

(a) Required to find: The volume of water in Tank A.

Solution:
Volume of water in Tank A $=8 \times 3 \times 4 \mathrm{~m}^{3}$

$$
=96 \mathrm{~m}^{3}
$$

(b) Data: $1 \mathrm{~m}^{3}=1000$ litres

Required to state: The volume of water in Tank A in litres
Solution:
Volume of water in Tank $\mathrm{A}=96 \mathrm{~m}^{3}$

$$
\begin{aligned}
& =96 \times 1000 \text { litres } \\
& =96000 \text { litres }
\end{aligned}
$$

(c) Data: All the water from Tank A is emptied into Tank B.

Required to find: The height of the water in Tank B
Solution:
Let the height of the water in Tank B be $x \mathrm{~m}$.

The volume of water in Tank B $=4 \times 4 \times x$

$$
=16 x
$$

Hence, $16 x=96$

$$
\begin{aligned}
& x=\frac{96}{16} \\
& x=6 \mathrm{~m}
\end{aligned}
$$

5. Data: Diagram showing triangle $A B C$ translated to give image triangle $A^{\prime} B^{\prime} C^{\prime}$.

(a) Required to write: The translation vector that maps triangle $A B C$ onto triangle $A^{\prime} B^{\prime} C^{\prime}$.
Solution:
Choose any point, say $C . C \xrightarrow{T} C^{\prime}$.

This is a shift of 5 units horizontally to the left and which is expressed as -5 . There is no vertical shift and this is expressed as 0 .

$$
\therefore T=\binom{-5}{0}
$$

(b) Data: Triangle $A B C$ is mapped onto triangle $X Y Z$ by the translation vector $\binom{1}{-4}$.

Required to draw: Triangle $X Y Z$
Solution:
$\triangle A B C \xrightarrow{T=\binom{1}{-4}} \Delta X Y Z$

$$
\left.\begin{array}{r}
A=(1,1) \\
\binom{1}{1} \xrightarrow{T=\binom{1}{-4}}\binom{1+1}{1+(-4)}=\binom{2}{-3} \\
S o X=(2,-3) \\
B=(3,1) \\
\binom{3}{1} \xrightarrow{T=\binom{1}{-4}}\binom{3+1}{1+(-4)}=\binom{4}{-3} \\
S o Y=(4,-3)
\end{array}\right] \begin{array}{r}
C=(3,4) \\
\binom{3}{4} \xrightarrow{T=\binom{1}{-4}}\binom{3+1}{4+(-4}=\binom{4}{0} \\
S o \quad Z=(4,0)
\end{array}
$$

(c) Required to write: The coordinates of
(i) X
(ii) Y
(iii) Z

Solution:

The coordinates of these points were found from before.
$X=(2,-3)$
$Y=(4,-3)$
$Z=(4,0)$
6. Data: Table showing the type of books sold by a bookstore in Trinidad and Tobago.

TYPE OF BOOKS	NUMBER OF BOOKS
Text Books	30
Magazines	35
Novels	50
Encyclopedias	55
Dictionaries	30
TOTAL	200

(a) Data: Incomplete bar chart to illustrate the types of books sold by a bookstore in Trinidad and Tobago.

Bar Chart

Required to draw: A bar chart to illustrate the data given

Solution:

Bar Chart

(b) (i) Required to find: The modal type of books. Solution:
The modal type of books is encyclopedias as shown by the longest bar.
(ii) Required to find: The probability that a customer buying a book would buy a dictionary.
Solution:
$P($ Book bought is a dictionary $)=\frac{\text { No. of dictionaries sold }}{\text { Total no. of books sold }}$
$=\frac{30}{200}$
$=\frac{3}{20}$ or 0.15 or 15%

SECTION II

7. (a) Data: Table showing the menu at a restaurant. Marlon orders 1 small portion of fried rice, 2 pieces of BBQ chicken and a medium drink. V.A.T. is charged at $12 \frac{1}{2} \%$.

ITEM	COST (\$)
1 small portion of fried rice	$\$ 10.00$
1 small portion of macaroni pie	$\$ 12.00$
1 piece of BBQ chicken	$\$ 15.00$
1 piece of BBQ fish	$\$ 20.00$
1 small drink	$\$ 6.00$
1 medium drink	$\$ 8.00$

(i) Required to calculate: The bill before V.A.T. Calculation:
1 small portion of fried rice $\quad=\$ 10.00$
2 pieces of BBQ chicken $=2 \times \$ 15.00=\$ 30.00$
I medium drink $\quad=\$ 8.00$
TOTAL $=\$ 48.00$
(ii) Required to calculate: The total bill with V.A.T. included.

Calculation:

$$
\begin{aligned}
\text { V.A.T. } & =12 \frac{1}{2} \% \text { of } \$ 48.00 \\
& =\frac{12.5}{100} \times \$ 48.00 \\
& =\$ 6.00
\end{aligned}
$$

The bill after V.A.T. $=\$ 48.00+\$ 6.00$

$$
=\$ 54.00
$$

(b) Data: Keisha went to the bank at which the exchange rate is US\$ $1=\mathrm{TT} \$ 6.75$ to change TT\$216.00 to US\$.
Required to convert: TT\$216.00 to US\$.
Solution:

TT\$6.75 \equiv US\$ 1.00
\therefore TT\$1.00 $=$ US $\frac{1.00}{6.75}$
$\operatorname{TT} \$ 216.00=$ US\$ $\frac{1.00}{6.75} \times 216$
$=$ US\$32
(c) (i) Required to construct: Triangle $X Y Z$ with $X Y=8 \mathrm{~cm}, X Z=6 \mathrm{~cm}$ and angle $Y X Z=90^{\circ}$.

Solution:

(ii) Required to bisect: Angle $Y X Z$. Solution:

8. (a) Data: Diagram showing a ladder leaning against a 12 m high vertical wall. The foot of the ladder rests on ground and is 16 m away from the base of the wall.

(i) Required to calculate: The length of the ladder.

Calculation:

$$
\begin{aligned}
(\text { Length of ladder })^{2} & =(16)^{2}+(12)^{2} \quad \text { (Pythagoras' Theorem) } \\
\text { Length of ladder } & =\sqrt{(16)^{2}+(12)^{2}} \\
& =\sqrt{256+144} \\
& =\sqrt{400} \\
& =20 \mathrm{~m}
\end{aligned}
$$

(ii) Required to calculate: The value of θ.

Calculation:

Since we know all three sides of the right triangle, we could have said

$$
\begin{aligned}
\tan \theta & =\frac{12}{16} \\
\theta & =\tan ^{-1}\left(\frac{12}{16}\right) \\
& =36.86^{\circ} \\
& =36.9^{\circ} \text { (to the nearest } 0.1^{\circ} \text {) }
\end{aligned}
$$

OR

$$
\begin{aligned}
\cos \theta & =\frac{16}{20} \\
\theta & =\cos ^{-1}\left(\frac{16}{20}\right) \\
& =36.86^{\circ} \\
& =36.9^{\circ}\left(\text { to the nearest } 0.1^{\circ}\right)
\end{aligned}
$$

OR

$$
\begin{aligned}
\sin \theta & =\frac{12}{20} \\
\theta & =\sin ^{-1}\left(\frac{12}{20}\right) \\
& =36.8 \frac{6}{}^{\circ} \\
& =36.9^{\circ}\left(\text { to the nearest } 0.1^{\circ}\right)
\end{aligned}
$$

(b) Data: Diagram showing a circular track of circumference 200 m . Ryan takes 3 minutes to ride around the track.

Circular Track

(i) Required to convert: 3 minutes to hours

Solution:

60 minutes $=1$ hour

$$
\begin{aligned}
& \therefore 1 \text { minute }=\frac{1}{60} \text { hour } \\
& \begin{aligned}
3 \text { minutes } & =\frac{1}{60} \times 3 \\
& =\frac{1}{20} \text { hour }
\end{aligned}
\end{aligned}
$$

(ii) Required to calculate: Ryan's speed in $\mathrm{km} / \mathrm{hr}$.

Calculation:

$$
\begin{aligned}
& 1000 \mathrm{~m}=1 \mathrm{~km} \\
& 1 \mathrm{~m}=\frac{1}{1000} \mathrm{~km} \\
& \begin{aligned}
\therefore 200 \mathrm{~m} & =\frac{1}{1000} \times 200 \\
& =\frac{1}{5} \mathrm{~km} \\
\text { Speed } & =\frac{\text { Distance }}{\text { Time }} \\
& =\frac{\frac{1}{5} \mathrm{~km}}{\frac{1}{20} \text { hour }} \\
& =4 \mathrm{kmh}^{-1}
\end{aligned}
\end{aligned}
$$

(iii) Data: Ryan cycled around the track 15 times.

Required to find: The distance covered in km
Solution:

$$
\text { Distance around track }=\frac{1}{5} \mathrm{~km}
$$

\therefore Distance covered after cycling 15 times $=15 \times \frac{1}{5} \mathrm{~km}$

$$
=3 \mathrm{~km}
$$

9. (a) Data: Cost of 1 story book and 4 magazines is $\$ 50.00$ and the cost of 2 story books and 3 magazines is $\$ 65.00$. b represents the cost of 1 story book and m represents the cost of 1 magazine.
(i) Required to write: Two equations in b and m to represent the information given.

Solution:

Cost of 1 story book at b and 4 magazines at $m=50$

$$
\begin{align*}
b & +\quad 4 m \\
b+4 m & =50 \\
& 50
\end{align*}
$$

Cost of 2 story books at b and 3 magazines at $m=65$

$$
2 b \quad+\quad 3 m \quad=650
$$

(ii) Required to solve: The pair of simultaneous equation to find b and m. Solution:

$$
\begin{array}{r}
b+4 m=50 \quad \ldots \text { (1) } \\
2 b+3 m=65 \quad \ldots \text { (2 }
\end{array}
$$

From equation (1):

$$
b=50-4 m \quad \ldots 3
$$

Substitute equation 3 into equation (2):

$$
\begin{aligned}
2(50-4 m)+3 m & =65 \\
100-8 m+3 m & =65 \\
-5 m & =65-100 \\
-5 m & =-35 \\
m & =\frac{-35}{-5} \\
m & =7
\end{aligned}
$$

When $m=7$

$$
\begin{aligned}
b & =50-4(7) \\
& =50-28 \\
& =22
\end{aligned}
$$

The cost of 1 story books is $\$ 22$ and the cost of 1 magazine is $\$ 7$.
(b) Data: Equation of the straight line is $y=3 x-2$.
(i) Data: Table of values for the straight line $y=3 x-2$.

\boldsymbol{x}	0	1	2	3
\boldsymbol{y}	-2		4	

Required to complete: The table of values.

Solution:

When $x=1$

$$
\begin{aligned}
y & =3(1)-2 \\
& =3-2 \\
& =1
\end{aligned}
$$

When $x=3$

$$
\begin{aligned}
y & =3(3)-2 \\
& =9-2 \\
& =7
\end{aligned}
$$

The completed table looks like:

\boldsymbol{x}	0	1	2	3
\boldsymbol{y}	-2	$\mathbf{1}$	4	7

(ii) Required to draw: The graph of $y=3 x-2$. Solution:

FAS-PASS
Maths

