NCSE 2015 PAPER 2

Section I

1. (a) Required to calculate: $6 \frac{1}{6}-1 \frac{3}{4}$ expressing the answer as a mixed number. Calculation:

$$
\begin{aligned}
6 \frac{1}{6}-1 \frac{3}{4} & =\frac{(6 \times 6)+1}{6}-\frac{(4 \times 1)+3}{4} \\
& =\frac{37}{6}-\frac{7}{4} \\
& =\frac{2(37)-3(7)}{12} \\
& =\frac{74-21}{12} \\
& =\frac{53}{12} \\
& =4 \frac{5}{12} \text { as a mixed number. }
\end{aligned}
$$

(b) Required to convert: $\frac{3}{8}$ to a percent.

Solution:

$\frac{3}{8}$ as a percent $=\frac{3}{8} \times 100$

$$
\begin{aligned}
& =\frac{300}{8} \\
& =37 \frac{4}{8} \% \\
& =37 \frac{1}{2} \%
\end{aligned}
$$

(c) Required to express: 7.185 correct to 2 significant figures.

Solution:
7.185

Deciding digit which is ≥ 5
So we add 1 to the first decimal and ignore all digits to its immediate right
7.1
$\begin{array}{r}7.1 \\ +\quad 1 \\ \hline\end{array}$
7.2
$\therefore 7.185 \approx 7.2$ correct to 2 significant figures.
2. Data: Venn diagram showing friends who are good at Mathematics and friends who play cricket from a group.

(a) (i) Required to list: All the friends who are good at Mathematics.

Solution:

$M=\{$ Michael, Ann, Nick, Mervin, Errol $\}$
(ii) Required to state: The number of friends who play cricket ONLY.

Solution:

Friends who play cricket only are Damien, Lloyd, Bob and Susan. These number four.
$\therefore 4$ students play cricket only.
(b) (i) Required to state: The number of friends who are neither good at Mathematics nor play cricket.

Solution:

Glenda, only, is neither good at Mathematics nor plays cricket.
$\therefore 1$ friend is neither good at Mathematics nor plays cricket.
(ii) Required to find: The probability that a friend is neither good at Mathematics nor plays cricket?

Solution:

P (Friend is neither good at Mathematics nor plays cricket)
$=\frac{\text { No. of friends who are neither good at Mathematics nor plays cricket }}{\text { Total no. of friends }}$
$=\frac{1}{1+2+3+4}$

$$
=\frac{1}{10}
$$

It is important to note that, by definition, a set is a clearly defined collection of objects. The description, 'good at mathematics' is a relative term and is not clearly defined. Hence, the statement that defines M, in this question, does not define a set.
(c) Required to find: The probability that a friend is good at Mathematics and plays cricket.
Solution:
P (Friend is good at Mathematics and plays cricket)
$=\frac{\text { No. of friends who are good at Mathematics and play cricket }}{\text { Total no. of friends }}$
$=\frac{3}{1+2+3+4}$
$=\frac{3}{10}$
3. (a) (i) Required to simplify: $6 m-2 p-3 m+4 p$

Solution:

$$
\begin{aligned}
6 m-2 p-3 m+4 p & =6 m-3 m-2 p+4 p \\
& =3 m+2 p
\end{aligned}
$$

(ii) Required to simplify: $3 x(5 x-5)-4 x^{2}$

Solution:

$$
\begin{aligned}
3 x(5 x-5)-4 x^{2} & =15 x^{2}-15 x-4 x^{2} \\
& =11 x^{2}-15 x \\
& =x(11 x-15)
\end{aligned}
$$

(b) (i) Required to factorise: $30+24 p$

Solution:

$$
\begin{aligned}
30+24 p & =\underline{6} \times 5+\underline{6} \times 4 \times p \\
& =6(5+4 p)
\end{aligned}
$$

(ii) Required to factorise: $6 p^{2}+19 p+15$

Solution:

$$
6 p^{2}+19 p+15=(3 p+5)(2 p+3)
$$

4. Data: Diagrams of cuboid shaped containers, a box and a shipping container. The box has dimensions 2.5 m by 1 m by 1 m and the shipping container has dimensions 3 m by 2 m by 5 m .

(a) Required to find: The volume of a box, in cubic metres.

Solution:

$$
\begin{aligned}
\text { Volume of a box } & =(2.5 \times 1 \times 1) \mathrm{m}^{3} \\
& =2.5 \mathrm{~m}^{3}
\end{aligned}
$$

(b) Required to determine: The number of boxes that will completely fill the shipping container.

Solution:

Number of boxes that will completely fill the shipping container will be

$$
=\frac{\text { Volume of shipping container }}{\text { Volume of a box }}
$$

$$
=\frac{5 \times 2 \times 3}{2.5}
$$

$=12$ boxes
(c) Required to convert: The volume of a box from cubic metres to cubic centimetres.

Solution:

$$
\begin{aligned}
1 \mathrm{~m} & =100 \mathrm{~cm} \\
\therefore 1 \mathrm{~m}^{3} & =(100 \times 100 \times 100) \mathrm{cm}^{3} \\
1 \mathrm{~m}^{3} & =1000000 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of a box $=2.5 \mathrm{~m}^{3}$

$$
\begin{aligned}
& =(2.5 \times 100 \times 100 \times 100) \mathrm{cm}^{3} \\
& =2500000 \mathrm{~cm}^{3} \\
& =2.5 \times 10^{6} \mathrm{~cm}^{3}
\end{aligned}
$$

5. Data: Diagram showing a quadrilateral ABCD on a grid.

(a) Data: ABCD is translated under $\binom{6}{9}$ to produce its image, $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$.

Required to draw: $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ on the same diagram.
Solution:
$\mathrm{ABCD} \xrightarrow{\binom{6}{9}} \mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
$\mathrm{A}=(-5,-2)$
$\binom{-5}{-2} \xrightarrow{\binom{6}{9}}\binom{-5+6}{-2+9}=\binom{1}{7}$
$\therefore \mathrm{A}^{\prime}=(1,7)$
$\mathrm{B}=(-5,-5)$
$\binom{-5}{-5} \xrightarrow{\binom{6}{9}}\binom{-5+6}{-5+9}=\binom{1}{4}$
$\therefore \mathrm{B}^{\prime}=(1,4)$
$\mathrm{C}=(-2,-5)$
$\binom{-2}{-5} \xrightarrow{\binom{6}{9}}\binom{-2+6}{-5+9}=\binom{4}{4}$
$\therefore \mathrm{C}^{\prime}=(4,4)$
$\mathrm{D}=(-2,-2)$
$\left.\binom{-2}{-2} \xrightarrow{\stackrel{(}{6}} 9\right)\binom{-2+6}{-2+9}=\binom{4}{7}$
$\therefore \mathrm{D}^{\prime}=(4,7)$

(b) Required to draw: Lines of symmetry for $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ on the diagram. Solution:

$A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a square.
There are 4 lines of symmetry, shown broken on the diagram.
6. Data: List of the numbers of occupants in each of 25 cars passing the lighthouse travelling towards Port of Spain during a 2 minute period.

2	2	5	4	2
5	2	3	1	5
2	1	2	3	3
3	2	4	2	6
3	4	3	2	4

(a) Required to complete: The frequency table given using the data. Solution:

Number of occupants per car	Tally	Frequency			
1	$\\|$	2			
2	$\nmid\|\|\|\|\mid$	9			
3	$\\|\\|\\|$	6			
4	$\\|\\|$	4			
5	\mid	3			
6		$\sum f=25$			

(b) Required to find: The modal number of occupants per car. Solution:
The modal number of occupants per car is 2 , since this number of occupants in a car occurs most often in accordance with the data.
(c) Required to calculate: The mean number of occupants per car. Calculation:
The mean number of occupants per car is \bar{x}, where

$$
\begin{aligned}
\bar{x} & =\frac{\sum f x}{\sum f} \quad \sum=\text { sum of, } f=\text { frequency, } x=\text { number of occupants per car } \\
& =\frac{(2 \times 1)+(9 \times 2)+(6 \times 3)+(4 \times 4)+(3 \times 5)+(1 \times 6)}{25} \\
& =\frac{2+18+18+16+15+6}{25} \\
& =\frac{75}{25} \\
& =3
\end{aligned}
$$

Section II

7. (a) Data: The exchange rate between TT dollars and Euros is TT $\$ 1.00=€ 0.125$.
(i) Required to convert: $€ 1$ to TT dollars.

Solution:

$$
\begin{aligned}
\mathrm{TT} \$ 1.00 & =€ 0.125 \\
€ 0.125 & =\mathrm{TT} \$ 1.00 \\
\therefore € 1.00 & =\mathrm{TT} \$ \frac{1.00}{0.125} \\
& =\mathrm{TT} \$ 8.00
\end{aligned}
$$

(ii) Data: A painting costs $€ 250000$.

Required to find: The cost of the painting in TT dollars
Solution:
Painting costs $€ 250000$
\therefore Cost in TT dollars $=250000 \times 8$

$$
=\mathrm{TT} \$ 2000000
$$

(b) Data: Mary invests $\$ 12000$ at a bank which pays 3\% simple interest. After a certain number of years, the total amount she receives is \$15 240 .
(i) Required to find: The amount of interest Mary received.

Solution:

Principal $=\$ 12000$
Rate $=3 \%$ per annum
Total received $=\$ 15240$

$$
\begin{aligned}
\therefore \text { Interest received } & =\text { Amount received }- \text { Principal } \\
& =\$ 15240-\$ 12000 \\
& =\$ 3240
\end{aligned}
$$

(ii) Required to calculate: The number of years in which Mary invested her money.

Calculation:

Let the number of years of investment be T.

$$
\begin{aligned}
\text { Recall: Simple Interest } & =\frac{\text { Principal } \times \text { Rate } \times \text { Time }}{100} \\
\therefore 3240 & =\frac{12000 \times 3 \times T}{100} \\
T & =\frac{3240 \times 100}{12000 \times 3}=9 \\
& =9 \text { years }
\end{aligned}
$$

(c) (i) Required to construct: An isosceles triangle with $A B=A C=5.8 \mathrm{~cm}$ and angle $B A C=90^{\circ}$ and state the length of BC correct to 1 decimal place.
Solution:

$B C=8.2 \mathrm{~cm}$ measured correct to 1 decimal place.
(ii) Required To Construct: An angle $P Q R=60^{\circ}$. Solution:

8. (a) Data: Diagram showing a bird on the ground 12 m away from the base of a tree flying directly to the top of the tree that is 5 m tall.

(i) Required to calculate: The distance, y, flown by the bird. Calculation:

$$
\begin{aligned}
y^{2} & =(12)^{2}+(5)^{2} \quad \text { (Pythagoras' Theorem) } \\
y & =\sqrt{(12)^{2}+(5)^{2}} \\
& =\sqrt{144+25} \\
& =\sqrt{169} \\
& =13 \mathrm{~m}
\end{aligned}
$$

(ii) Required to calculate: x correct to 2 decimal places.

Calculation:

$$
\begin{aligned}
x & =\tan ^{-1}\left(\frac{5}{12}\right) \\
& =22.619^{\circ} \\
& =22.62^{\circ} \text { correct to } 2 \text { decimal places }
\end{aligned}
$$

Alternative Method:

$$
\begin{aligned}
x & =\sin ^{-1}\left(\frac{5}{13}\right) \\
& =22.619^{\circ} \\
& =22.62^{\circ} \text { correct to } 2 \text { decimal places }
\end{aligned}
$$

Alternative Method:

$$
\begin{aligned}
x & =\cos ^{-1}\left(\frac{12}{13}\right) \\
& =22.619^{\circ} \\
& =22.62^{\circ} \text { correct to } 2 \text { decimal places }
\end{aligned}
$$

(b) Data: Airplane departs Piarco International Airport at 2:35 p.m. and arrives at the Arthur Napoleon Raymond Robinson International Airport at 3:05 p.m. The distance between the airports is 83 km .
(i) Required to calculate: The actual distance between the airports in centimetres.

Calculation:

Distance between the two airports $=83 \mathrm{~km}$

$$
1 \mathrm{~km}=100000 \mathrm{~cm}
$$

$$
\begin{aligned}
\therefore 83 \mathrm{~km} & =(83 \times 100000) \mathrm{cm} \\
& =8300000 \mathrm{~cm} \\
& =8.3 \times 10^{6} \mathrm{~cm}
\end{aligned}
$$

(ii) Required to find: The distance between the two airports, in metres.

Solution:

$$
\begin{aligned}
1 \mathrm{~km} & =1000 \mathrm{~m} \\
\therefore 83 \mathrm{~km} & =(83 \times 1000) \mathrm{m} \\
& =83000 \mathrm{~m} \\
& =8.3 \times 10^{4} \mathrm{~m}
\end{aligned}
$$

(iii) Required to find: The time taken to arrive at the Arthur Napoleon Raymond Robinson International Airport, in minutes.

Solution:

Arrival time $=3: 05 \mathrm{p} . \mathrm{m}$.
Departure time $=2: 35$ p.m.
Time of flight $=: 30$ minutes
\therefore Time taken to arrive at the Arthur Napoleon Raymond Robinson International Airport is 30 minutes.
(iv) Required to find: The time taken to arrive at the Arthur Napoleon Raymond Robinson International Airport, in hours.

Solution:

1 minute $=\frac{1}{60}$ hour
Hence, the time taken, in hours $=\frac{30}{60}$

$$
=\frac{1}{2} \text { hour }
$$

(v) Required to find: The average speed of travel for the journey in kilometres per hour.
Solution:

$$
\begin{aligned}
\text { Average speed } & =\frac{\text { Total distance }}{\text { Time taken }} \\
& =\frac{83 \mathrm{~km}}{\frac{1}{2} \text { hour }} \\
& =166 \mathrm{kmh}^{-1}
\end{aligned}
$$

9. (a) Data: Indra bought 3 cups of coffee and 2 pieces of cake for a total of $\$ 12.00$ and Carol bought 2 cups of coffee and 3 pieces of cake for a total of $\$ 13.00$. x represents the cost of one cup of coffee and y represents the cost of a piece of cake.
(i) Required to write: An equation using x and y to represent the total cost of cups of coffee and pieces of cake that Indra bought.

Solution:

Cost of 3 cups of coffee at $\$ x$ each and 2 pieces of cake at $\$ y$ dollars each $=(3 \times x)+(2 \times y)$
$=3 x+2 y$
Hence, $3 x+2 y=12$...(
(ii) Required To Find: The cost of one cup of coffee and one piece of cake. Solution:
Cost of 2 cups of coffee at $\$ x$ each and 3 pieces of cake at $\$ y$ dollars each

$$
=(2 \times x)+(3 \times y)
$$

$=2 x+3 y$
Hence, $2 x+3 y=13 \quad \ldots 2$

$$
\begin{array}{ll}
3 x+2 y=12 & \ldots(1) \\
2 x+3 y=13 & \ldots \text { (2 }
\end{array}
$$

Equation $\mathbf{1} \times 3$
$9 x+6 y=36 \quad \ldots 3$

Equation 2 $\times-2 \quad-4 x-6 y=-26 \quad \ldots 4$
Equation (3+ Equation (4) $\quad \frac{5 x \quad=10}{\therefore x=2}$

Substitute $x=2$ into equation (:

$$
\begin{aligned}
3(2)+2 y & =12 \\
2 y & =6 \\
y & =3
\end{aligned}
$$

Hence, 1 cup of coffee costs $\$ 2$ and 1 piece of cake costs $\$ 3$.

Alternative Method:

$$
\begin{array}{ll}
3 x+2 y=12 & \ldots(1) \\
2 x+3 y=13 & \ldots \text { (2 }
\end{array}
$$

Make y the subject in equation (1):

$$
\begin{aligned}
2 y & =12-3 x \\
y & =\frac{12-3 x}{2}
\end{aligned}
$$

Substitute in equation 2 :

$$
2 x+3\left(\frac{12-3 x}{2}\right)=13
$$

$\times 2$

$$
\begin{aligned}
4 x+3(12-3 x) & =26 \\
4 x+36-9 x & =26 \\
-5 x & =-10 \\
x & =\frac{-10}{-5} \\
& =2
\end{aligned}
$$

Substitute $x=2$ in the expression, $y=\frac{12-3 x}{2}$:

$$
\begin{aligned}
y & =\frac{12-3(2)}{2} \\
& =\frac{6}{2} \\
& =3
\end{aligned}
$$

Hence, 1 cup of coffee costs $\$ 2$ and 1 piece of cake costs $\$ 3$.
(b) Data: The $y=2 x+1$ gives the relationship between x and y.
(i) Required to complete: The table of values given for this equation. Solution:

$$
y=2 x+1
$$

When $x=2$

$$
\begin{aligned}
y & =2(2)+1 \\
& =5
\end{aligned}
$$

When $x=4$

$$
\begin{aligned}
y & =2(4)+1 \\
& =9
\end{aligned}
$$

The completed table is

\boldsymbol{x}	0	2	3	4
\boldsymbol{y}	1	5	7	9

(ii) Required to draw: The graph of $y=2 x+1$ on the grid provided.

Solution:

(iii) Required to state: The y - intercept for the graph of $y=2 x+1$. Solution:
From the graph the intercept on the y - axis can be read off as $(0,1)$.
From the table, the y-intercept can be seen as $(0,1)$, that is, when $x=0, y=1$.
Also, we may substitute $x=0$ to find

$$
y=2(0)+1
$$

$$
=1
$$

$\therefore y$-intercept is 1 and the line cuts the vertical axis at $(0,1)$.

