

NCSE 2014

Section I

1. (a) Required to calculate:
$$2\frac{3}{4} \div \frac{5}{8}$$

Calculation:
 $2\frac{3}{4} \div \frac{5}{8} = \frac{(2 \times 4) + 3}{4} \div \frac{5}{8}$
 $= \frac{11}{4} \div \frac{5}{8}$
 $= \frac{11}{4} \times \frac{8}{5}$
 $= \frac{22}{5}$ as an improper fraction
 $= 4\frac{2}{5}$ as a mixed fraction

(b) **Required to convert:** $2\frac{7}{8}$ to decimal form, correct to 1 decimal place.

Solution:

Consider the fractional part of $2\frac{7}{8}$ and which is $\frac{7}{8}$. We convert this fraction to a decimal form, $\begin{array}{r} 0.875\\ 8\end{array}$ $\begin{array}{r} 7\\ 8\end{array}$ $\begin{array}{r} -\underline{64}\\ 60\\ -\underline{56}\\ 40\\ -\underline{40}\\ \underline{0}\\ \end{array}$ $\begin{array}{r} -\underline{40}\\ \underline{0}\\ \underline{0}\\ \end{array}$ $\begin{array}{r} \frac{7}{8} = 0.875 \text{ and so } 2\frac{7}{8} = 2.875. \end{array}$ 2.875 $\begin{array}{r} \uparrow\\ \hline\\ \end{array}$ deciding digit ≥ 5

(So we add 1 to the first digit after the decimal point and ignore all digits to the right of the first decimal place)

Hence, $2\frac{7}{8} \approx 2.9$ (correct to 1 decimal place)

(c) **Required to express:** 14.995 correct to 2 significant figures. **Solution:**

14.995 ↑

deciding digit ≥ 5

- : $14.995 \approx 14 + 1$ (and we ignore all digits to the right)
 - ≈15 (correct to 2 significant figures)
- 2. **Data:** In a class of 40 students, 17 students do Science, 15 students do Art and 5 students do both Science and Art.
 - (a) **Required to complete:** The Venn diagram given. **Solution:**

Let

 $S = \{$ Students who do Science $\}$

 $A = \{$ Students who do Art $\}$

(b) **Required to find:** The number of students doing only one subject. **Solution:**

Number of students who do Science only = 12Number of students who do Art only = 10

Hence, the number of students who study only one of the mentioned subjects (Science or Art) = 12+10= 22

(c) Required to find: The probability that a student chosen at random does both subjects.
 Solution:

 $P(\text{Student does both subjects}) = \frac{\text{No. of students doing both subjects}}{\text{No. of students in the class}}$

$$=\frac{3}{40}$$
$$=\frac{1}{8}$$

- 3. (a) (i) **Required to simplify:** 8a 4b + 5b **Solution:** 8a - 4b + 5b = 8a + 5b - 4b = 8a + b
 - (ii) Required to simplify: $2x(3x+5)-6x^2$ Solution: $2x(3x+5)-6x^2 = 6x^2 + 10x - 6x^2$ $= 6x^2 - 6x^2 + 10x$ = 10x

(b) (i) **Required to factorise:** 2a + 4bSolution: 2a + 4b = 2(a) + 2(2b)= 2(a+2b)

- (ii) Required to factorise: $5ab^2 15a^2b^3$ Solution: $5ab^2 - 15a^2b^3 = 5ab^2 \times 1 - 5ab^2 \times 3ab$ $= 5ab^2(1-3ab)$
- 4. Data: Diagrams showing the radius and vertical height of Can A and Can B.

(a) **Required to find:** The volume of Can A, in cm³. Solution: Can A is a cylinder. $V = \pi r^2 h$ (r = radius, h = vertical height)

 $V = \frac{22}{7} \times 2 \times 2 \times 14 \text{ cm}^3$ $V = 176 \text{ cm}^3$

(b) **Required to convert:** The volume of Can A from cm³ to litres.

Solution:

 $1000 \text{ cm}^3 = 1 \text{ litre}$

∴ 1 cm³ =
$$\frac{1}{1000}$$
 litre
176 cm³ = $\frac{1}{1000}$ ×176 litre
= 0.176 litre

(c) **Required to calculate:** The ratio of the volume of Can A to the volume of Can B.

Calculation:

Volume of Can A: Volume of Can B

$$\pi(2)^{2} \times 14: \pi(4)^{2} \times 14$$

$$2^{2}: 4^{2}$$

$$4: 16$$

$$1: 4$$

5. **Data:** Diagram showing quadrilateral *ABCD*. *ABCD* is reflected in the y – axis to produce image A'B'C'D'.

(a) **Required** to draw and label A'B'C'D'.

Solution:

ABCD is a rectangle of width 3 blocks and length 4 blocks. The image is always the same perpendicular distance away from but on the opposite side of the reflective plane, as the object.

(b) **Required to draw:** The lines of symmetry for *ABCD* on the diagram above. **Solution:**

6. **Data:** A calendar showing the number of texts that Ria sent each day for the month of April.

April													
	Sun	I	Mon	Ţ '	Tue		Wed	1	Thu	Τ	Fri		Sat
1	5	2	1	3	4	4	3	5	2	6	5	7	3
8	5	9	3	10	2	11	4	12	1	13	1	14	2
15	4	16	3	17	3	18	5	19	3	20	3	21	1
22	2	23	5	24	1	25	3	26	2	27	4	28	5
29	3	30	2	+									

(a) Required to find: The number of texts sent on Thursday 19th April. Solution:
 From the table, we can see that 3 texts were sent on that day.

(b) **Required to complete:** The frequency table for the given data.

Solution:

Number of texts	Tally	Frequency
1	\mathbb{M}	5
2	₩1	6
3		9
4		4
5	\mathbb{M}	6
		$\sum f = 30$

(c) **Required to calculate:** The total number of texts Ria sent. **Calculation:**

Total number of texts sent = $\sum fx$ 1 text on 5 days = 1×5 = 5 texts 2 texts on 6 days = 2×6 = 12 texts 3 texts on 9 days = 3×9 = 27 texts 4 texts on 4 days = 4×4 = 16 texts 5 texts on 6 days = 5×6 = 30 texts Total number of texts sent = 5+12+27+16+30

= 90 texts

(d) **Required to calculate:** The mean number of texts Ria sent per day. **Calculation:**

Mean number of texts sent per day =
$$\frac{\sum fx}{\sum f}$$

= $\frac{\text{Total no. of texts sent}}{\text{No. of days}}$
= $\frac{90}{30}$
= 3 texts

SECTION II

- 7. (a) **Data:** The 10% down payment on a vacation is \$120 US. US \$1.00 = TT \$6.50
 - (i) Required to calculate: The down payment in TT dollars. Calculation: Down payment = US \$120

$$= TT(\$120 \times 6.50)$$

$$= TT \$780.00$$

(ii) **Required to calculate:** The total cost of the vacation in TT dollars. **Calculation:**

10% of the cost of the vacation costs = TT\$780

 $\therefore 1\%$ of the cost of the vacation will cost = TT $\frac{\$780}{10}$

$$=$$
 \$78
The total cost of the vacation (100%) will have a cost $=$ \$78×100

= \$7 800

- (b) **Data:** Principal = \$7200, rate = 8% per annum and time = 7 years.
 - **Required to calculate:** The interest earned on the investment. **Calculation:**

Simple interest =
$$\frac{\text{Principal} \times \text{Rate} \times \text{Time}}{100}$$
$$= \frac{\$7200 \times 8 \times 7}{100}$$
$$= \$4032$$

- (ii) Required to calculate: The total amount she will receive from her investment.
 Calculation: Amount that Mrs. Gift will receive = Amount deposited + Interest earned = \$7200 + \$4032 = \$11232
- (c) (i) Required To Construct: Triangle LMN with lengths LM = MN = LN = 5 cm.
 Construction:

(ii) **Required to bisect:** Angle *XYZ*. **Solution:**

- 8. (a) **Data:** Diagram showing an airplane, a cruise ship and a jet skier.
 - (i) **Required to calculate:** The distance between the airplane and the cruise ship.

Calculation:

The distance between the airplane and the cruise ship

- $= \sqrt{(330)^2 + (560)^2}$ (Pythagoras' Theorem) = 650 m
- (ii) **Required to calculate:** The size of the angle *x*. **Calculation:**

$$\tan x = \frac{330}{560}$$
$$x = \tan^{-1} \left(\frac{330}{560} \right)$$
$$= 30.5 \frac{1}{2}^{\circ}$$
$$= 30.5^{\circ} \text{ (to the nearest 0.1°)}$$

OR

$$x = \sin^{-1}\left(\frac{330}{650}\right)$$
$$x = \cos^{-1}\left(\frac{560}{650}\right)$$

 $x = 30.5^{0}$ (to the nearest 0.1⁰ or 1 d.p.)

- (b) **Data:** Paul goes to Rita's house to study. He leaves home at 3:55 pm and arrives at Rita's house at 4:35 pm. Paul lives 800 m away from Rita. Paul and Rita's homework assignment is to draw a map of the neighborhood, using a scale of 1 cm to represent 200 m.
 - (i) **Required to determine:** The number of centimetres used to represent the actual distance between Paul's house and Rita's house.

Solution: Actual distance = 800 m Scale is 200 m = 1 cm $\therefore 1 \text{ m} = \frac{1}{200} \text{ cm}$

$$800 \text{ m} = \frac{1}{200} \times 800 \text{ cm}$$
$$= 4 \text{ cm}$$

(ii) **Required to determine:** The distance from Paul's house to Rita's house in kilometres.

Solution: 1000 m = 1 km $1 \text{ m} = \frac{1}{1000} \text{ km}$ $800 \text{ m} = \frac{1}{1000} \times 800 \text{ km}$ = 0.8 km

(iii) Required to determine: The length of time, Paul took to arrive at Rita's house.Solution:

Solution.	
Time of arrival	4 : 3 5 pm
Time of departure	<u>3 : 5 5</u> pm
	: 4 0

Time taken = 40 minutes

(iv) Required to determine: The time taken, in hours, for Paul to arrive at Rita's house.Solution:

Time taken by Paul = 40 minutes 60 minutes = 1 hour

1 minute =
$$\frac{1}{60}$$
 hour
40 minutes = $\frac{1}{60} \times 40$ hour
= $\frac{2}{3}$ hour

(v) Required to determine: Paul's average speed while walking from his house to Rita's house.
 Solution:

Average speed =
$$\frac{\text{Total distance covered}}{\text{Total time taken}}$$

= $\frac{0.8 \text{ km}}{\frac{2}{3} \text{ hour}}$
= 1.2 kmh⁻¹

9. (a) **Data:** Table showing the number of pens and pencils and the amount spent by Raj and Ana. Cost of 1 pen = x. Cost of 1 pencil = y.

Raj	ØÍ	Î		Total Cost \$51.00
Ann				Total Cost \$39.00

 (i) Required to write: An equation, in x and y, to represent the total cost of the pens and pencils Raj bought.
 Solution: Raj spent \$51 to purchase 3 pens and 2 pencils. Hence,

$$(3 \times x) + (2 \times y) = 51$$

 $3x + 2y = 51$...(1)

(ii) **Required to determine:** The cost of 1 pen and 1 pencil using a pair of simultaneous equations.

Solution:

Ann spent \$39 to purchase 2 pens and 3 pencils. Hence,

 $(2 \times x) + (3 \times y) = 39$ 2x + 3y = 39 ...(2)

Equation (1) ×2 6 x + 4 y = 102...(3)

Equation (2) $\times -3$ -6x-9y = -117 ...(4)

Equation (3) + Equation (4) 6x + 4y = 102

$$+ -\frac{6x - 9y = -117}{-5y = -15}$$

Hence,

$$v = \frac{-15}{-5}$$

= 3

When y = 3, substitute into (1) 3x + 2(3) = 51 3x = 51 - 6 3x = 45 $x = \frac{45}{3}$

x = 15

Hence, the cost of 1 pen = 15 and the cost of 1 pencil = 3.

The method used was the method of elimination.

We could have solved the two equations by other methods.

S.C.

Alternative method: 3x + 2y = 51 ...(1) 2x + 3y = 39 ...(2) From equation (1) 3x = 51 - 2y $x = \frac{51 - 2y}{3}$ Substitute in equation (2) $\frac{2(51-2y)}{3} + 3y = 39$ $\frac{2(51-2y)}{3} + \frac{3y}{1} = \frac{39}{1}$ ×3 2(51-2y)+3(3y)=3(39)102 - 4y + 9y = 1175y = 15Substitute y = 3 $x = \frac{51 - 2(3)}{3}$ =15

The above method was the method of substitution

Alternative Method:

Consider both equations as straight lines and draw the lines on the same axes.

In each case, we choose any two values of x and find the corresponding values of y. The x value chosen and the corresponding y value, represents the (x, y) coordinates of a point on the line. We need only two points to draw any straight line. We join these two points and can extend the line to any desired length.

3x + 2y = 51

(b) **Data:** y = 2x + 1

(i) **Required to complete:** The table given, using the equation given. **Solution:**

When $x = 0$	When $x = 2$
y = 2(0) + 1	y = 2(2) + 1
=1	= 5

When $x = 3$	When $x = 4$
y = 2(3) + 1	y = 2(4) + 1
= 7	= 9

The completed table looks like:

x	0	1	2	3	4
у	1	3	5	7	9

(ii) **Required to draw:** The graph of y = 2x+1. Solution:

(iii) Required to state: The y – intercept for the graph of y = 2x + 1. Solution:

MNN FOR

The y – intercept of y = 2x + 1 is 1, that is, the line y = 2x + 1 cuts the y - axis at (0, 1).