NCSE 2014

Section I

1. (a) Required to calculate: $2 \frac{3}{4} \div \frac{5}{8}$

Calculation:

$$
\begin{aligned}
2 \frac{3}{4} \div \frac{5}{8} & =\frac{(2 \times 4)+3}{4} \div \frac{5}{8} \\
& =\frac{11}{4} \div \frac{5}{8} \\
& =\frac{11}{4} \times \frac{8}{5} \\
& =\frac{22}{5} \text { as an improper fraction } \\
& =4 \frac{2}{5} \text { as a mixed fraction }
\end{aligned}
$$

(b) Required to convert: $2 \frac{7}{8}$ to decimal form, correct to 1 decimal place.

Solution:

Consider the fractional part of $2 \frac{7}{8}$ and which is $\frac{7}{8}$.
We convert this fraction to a decimal form,
0.875
$8 \longdiv { 7 0 }$
8) 70

- $\underline{64}$

60
$-\underline{56}$
40
$-\underline{40}$
0
$\therefore \frac{7}{8}=0.875$ and so $2 \frac{7}{8}=2.875$.
2.875
\uparrow
deciding digit ≥ 5
(So we add 1 to the first digit after the decimal point and ignore all digits to the right of the first decimal place)

Hence, $2 \frac{7}{8} \approx 2.9$ (correct to 1 decimal place)
(c) Required to express: 14.995 correct to 2 significant figures.

Solution:

14.995
\uparrow
deciding digit ≥ 5

$$
\begin{aligned}
\therefore 14.995 & \approx 14+1 \text { (and we ignore all digits to the right) } \\
& \approx 15 \text { (correct to } 2 \text { significant figures) }
\end{aligned}
$$

2. Data: In a class of 40 students, 17 students do Science, 15 students do Art and 5 students do both Science and Art.
(a) Required to complete: The Venn diagram given.

Solution:
Let
$S=\{$ Students who do Science $\}$
$A=\{$ Students who do Art $\}$

U

(b) Required to find: The number of students doing only one subject. Solution:

$$
U=40
$$

Number of students who do Science only $=12$
Number of students who do Art only $=10$
Hence, the number of students who study only one of the mentioned subjects (Science or Art) $=12+10$

$$
=22
$$

(c) Required to find: The probability that a student chosen at random does both subjects.
Solution:
$P($ Student does both subjects $)=\frac{\text { No. of students doing both subjects }}{\text { No. of students in the class }}$

$$
\begin{aligned}
& =\frac{5}{40} \\
& =\frac{1}{8}
\end{aligned}
$$

3. (a) (i) Required to simplify: $8 a-4 b+5 b$

Solution:

$$
\begin{aligned}
8 a-4 b+5 b & =8 a+5 b-4 b \\
& =8 a+b
\end{aligned}
$$

(ii) Required to simplify: $2 x(3 x+5)-6 x^{2}$

Solution:

$$
\begin{aligned}
2 x(3 x+5)-6 x^{2} & =6 x^{2}+10 x-6 x^{2} \\
& =6 x^{2}-6 x^{2}+10 x \\
& =10 x
\end{aligned}
$$

(b) (i) Required to factorise: $2 a+4 b$ Solution:

$$
\begin{aligned}
2 a+4 b & =2(a)+2(2 b) \\
& =2(a+2 b)
\end{aligned}
$$

(ii) Required to factorise: $5 a b^{2}-15 a^{2} b^{3}$

Solution:

$$
\begin{aligned}
5 a b^{2}-15 a^{2} b^{3} & =5 a b^{2} \times 1-5 a b^{2} \times 3 a b \\
& =5 a b^{2}(1-3 a b)
\end{aligned}
$$

4. Data: Diagrams showing the radius and vertical height of Can A and Can B.

(a) Required to find: The volume of Can A , in cm^{3}.

Solution:
Can A is a cylinder.
$V=\pi r^{2} h \quad(r=$ radius, $h=$ vertical height $)$
$V=\frac{22}{7} \times 2 \times 2 \times 14 \mathrm{~cm}^{3}$
$V=176 \mathrm{~cm}^{3}$
(b) Required to convert: The volume of Can A from cm^{3} to litres.

Solution:

$1000 \mathrm{~cm}^{3}=1$ litre
$\therefore 1 \mathrm{~cm}^{3}=\frac{1}{1000}$ litre
$176 \mathrm{~cm}^{3}=\frac{1}{1000} \times 176$ litre
$=0.176$ litre
(c) Required to calculate: The ratio of the volume of Can A to the volume of Can
B.

Calculation:

Volume of Can A: Volume of Can B

$$
\begin{gathered}
\pi(2)^{2} \times 14: \pi(4)^{2} \times 14 \\
2^{2}: 4^{2} \\
4: 16 \\
1: 4
\end{gathered}
$$

5. Data: Diagram showing quadrilateral $A B C D . A B C D$ is reflected in the y-axis to produce image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

(a) Required to draw and label $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

Solution:

$A B C D$ is a rectangle of width 3 blocks and length 4 blocks.
The image is always the same perpendicular distance away from but on the opposite side of the reflective plane, as the object.

(b) Required to draw: The lines of symmetry for $A B C D$ on the diagram above. Solution:

6. Data: A calendar showing the number of texts that Ria sent each day for the month of April.

April											
Sun	Mon		Tue		Wed		Thu		Fri		Sat
15	1	${ }^{3}$	4		3	5	2	${ }^{6}$	5	7	3
${ }^{8} 5$	${ }^{9} 3$	${ }^{10}$	2	${ }^{11}$	4	${ }^{12}$	1	${ }^{13}$	1	${ }^{14}$	2
${ }^{15} 4$	${ }^{16} 3$	${ }^{17}$	3	${ }^{18}$	5	${ }^{19}$	3	${ }^{20}$	3	${ }^{21}$	1
${ }^{22} \quad 2$	${ }^{23} 5$	24	1		3	${ }^{26}$	2	${ }^{27}$	4	${ }^{28}$	5
293	${ }^{30} 2$										

(a) Required to find: The number of texts sent on Thursday $19^{\text {th }}$ April. Solution:
From the table, we can see that 3 texts were sent on that day.
(b) Required to complete: The frequency table for the given data.

Solution:

Number of texts	Tally	Frequency			
1	\mathbb{N}	5			
2					
3	$\\|\\|\\|$	6			
4		9			
5		4			
		6			

(c) Required to calculate: The total number of texts Ria sent. Calculation:
Total number of texts sent $=\sum f x$
1 text on 5 days $=1 \times 5$

$$
=5 \text { texts }
$$

2 texts on 6 days $=2 \times 6$

$$
=12 \text { texts }
$$

3 texts on 9 days $=3 \times 9$

$$
=27 \text { texts }
$$

4 texts on 4 days $=4 \times 4$

$$
=16 \text { texts }
$$

5 texts on 6 days $=5 \times 6$

$$
=30 \text { texts }
$$

Total number of texts sent $=5+12+27+16+30$

$$
=90 \text { texts }
$$

(d) Required to calculate: The mean number of texts Ria sent per day. Calculation:
Mean number of texts sent per day $=\frac{\sum f x}{\sum f}$

$$
\begin{aligned}
& =\frac{\text { Total no. of texts sent }}{\text { No. of days }} \\
& =\frac{90}{30} \\
& =3 \text { texts }
\end{aligned}
$$

SECTION II

7. (a) Data: The 10% down payment on a vacation is $\$ 120$ US.

US $\$ 1.00=$ TT $\$ 6.50$
(i) Required to calculate: The down payment in TT dollars.

Calculation:
Down payment $=$ US $\$ 120$

$$
\begin{aligned}
& =\mathrm{TT}(\$ 120 \times 6.50) \\
& =\mathrm{TT} \$ 780.00
\end{aligned}
$$

(ii) Required to calculate: The total cost of the vacation in TT dollars. Calculation:
10% of the cost of the vacation costs $=\mathrm{TT} \$ 780$
$\therefore 1 \%$ of the cost of the vacation will cost $=\mathrm{TT} \frac{\$ 780}{10}$

$$
=\$ 78
$$

The total cost of the vacation (100\%) will have a cost $=\$ 78 \times 100$

$$
=\$ 7800
$$

(b) Data: Principal $=\$ 7200$, rate $=8 \%$ per annum and time $=7$ years.
(i) Required to calculate: The interest earned on the investment. Calculation:

$$
\begin{aligned}
\text { Simple interest } & =\frac{\text { Principal } \times \text { Rate } \times \text { Time }}{100} \\
& =\frac{\$ 7200 \times 8 \times 7}{100} \\
& =\$ 4032
\end{aligned}
$$

(ii) Required to calculate: The total amount she will receive from her investment.
Calculation:
Amount that Mrs. Gift will receive $=$ Amount deposited + Interest earned

$$
\begin{aligned}
& =\$ 7200+\$ 4032 \\
& =\$ 11232
\end{aligned}
$$

(c) (i) Required To Construct: Triangle $L M N$ with lengths $L M=M N=L N=5$ cm.

Construction:

(ii) Required to bisect: Angle $X Y Z$. Solution:

8. (a) Data: Diagram showing an airplane, a cruise ship and a jet skier.
(i) Required to calculate: The distance between the airplane and the cruise ship.

Calculation:

The distance between the airplane and the cruise ship

$$
\begin{aligned}
& =\sqrt{(330)^{2}+(560)^{2}} \quad \text { (Pythagoras' Theorem) } \\
& =650 \mathrm{~m}
\end{aligned}
$$

(ii) Required to calculate: The size of the angle x.

Calculation:

$$
\begin{aligned}
\tan x & =\frac{330}{560} \\
x & =\tan ^{-1}\left(\frac{330}{560}\right) \\
& =30.51^{\circ} \\
& =30.5^{\circ}\left(\text { to the nearest } 0.1^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { OR } \\
& x=\sin ^{-1}\left(\frac{330}{650}\right) \\
& x=\cos ^{-1}\left(\frac{560}{650}\right) \\
& x=30.5^{0} \text { (to the nearest } 0.1^{0} \text { or } 1 \text { d.p.) }
\end{aligned}
$$

(b) Data: Paul goes to Rita's house to study. He leaves home at 3:55 pm and arrives at Rita's house at $4: 35 \mathrm{pm}$. Paul lives 800 m away from Rita. Paul and Rita's homework assignment is to draw a map of the neighborhood, using a scale of 1 cm to represent 200 m .
(i) Required to determine: The number of centimetres used to represent the actual distance between Paul's house and Rita's house.

Solution:

Actual distance $=800 \mathrm{~m}$
Scale is

$$
\begin{aligned}
200 \mathrm{~m} & \equiv 1 \mathrm{~cm} \\
\therefore 1 \mathrm{~m} & \equiv \frac{1}{200} \mathrm{~cm} \\
800 \mathrm{~m} & \equiv \frac{1}{200} \times 800 \mathrm{~cm} \\
& =4 \mathrm{~cm}
\end{aligned}
$$

(ii) Required to determine: The distance from Paul's house to Rita's house in kilometres.

Solution:

$1000 \mathrm{~m}=1 \mathrm{~km}$

$$
\begin{aligned}
1 \mathrm{~m} & =\frac{1}{1000} \mathrm{~km} \\
800 \mathrm{~m} & =\frac{1}{1000} \times 800 \mathrm{~km} \\
& =0.8 \mathrm{~km}
\end{aligned}
$$

(iii) Required to determine: The length of time, Paul took to arrive at Rita's house.

Solution:

Time of arrival $4: 35 \mathrm{pm}$
Time of departure $\frac{3: 55}{: 40} \mathrm{pm}$

Time taken $=40$ minutes
(iv) Required to determine: The time taken, in hours, for Paul to arrive at Rita's house.

Solution:

Time taken by Paul $=40$ minutes

$$
60 \text { minutes }=1 \text { hour }
$$

$$
1 \text { minute }=\frac{1}{60} \text { hour }
$$

$$
40 \text { minutes }=\frac{1}{60} \times 40 \text { hour }
$$

$$
=\frac{2}{3} \text { hour }
$$

(v) Required to determine: Paul's average speed while walking from his house to Rita's house.

Solution:

$$
\begin{aligned}
\text { Average speed } & =\frac{\text { Total distance covered }}{\text { Total time taken }} \\
& =\frac{0.8 \mathrm{~km}}{\frac{2}{3} \text { hour }} \\
& =1.2 \mathrm{kmh}^{-1}
\end{aligned}
$$

9. (a) Data: Table showing the number of pens and pencils and the amount spent by Raj and Ana. Cost of 1 pen $=\$ x$. Cost of 1 pencil $=\$ y$.

(i) Required to write: An equation, in x and y, to represent the total cost of the pens and pencils Raj bought.

Solution:

Raj spent $\$ 51$ to purchase 3 pens and 2 pencils.
Hence,

$$
\begin{gather*}
(3 \times x)+(2 \times y)=51 \\
3 x+2 y=51 \tag{1}
\end{gather*}
$$

(ii) Required to determine: The cost of 1 pen and 1 pencil using a pair of simultaneous equations.

Solution:

Ann spent $\$ 39$ to purchase 2 pens and 3 pencils.
Hence,

$$
\begin{array}{r}
(2 \times x)+(3 \times y)=39 \\
2 x+3 y=39 \tag{2}
\end{array}
$$

Equation (1) $\times 2$
$6 x+4 y=102 \ldots$ (3)
Equation (2) $\times-3$
$-6 x-9 y=-117$
Equation (3) + Equation (4)

$$
\begin{aligned}
& 6 x+4 y=102 \\
&+-6 x-9 y=-117 \\
& \hline-5 y=-15 \\
& \hline
\end{aligned}
$$

Hence,

$$
\begin{aligned}
y & =\frac{-15}{-5} \\
& =3
\end{aligned}
$$

When $y=3$, substitute into (1)

$$
\begin{aligned}
3 x+2(3) & =51 \\
3 x & =51-6 \\
3 x & =45 \\
x & =\frac{45}{3} \\
x & =15
\end{aligned}
$$

Hence, the cost of 1 pen $=\$ 15$ and the cost of 1 pencil $=\$ 3$.

The method used was the method of elimination.
We could have solved the two equations by other methods.

Alternative method:

$$
\begin{align*}
& 3 x+2 y=51 \tag{1}\\
& 2 x+3 y=39 \tag{2}
\end{align*}
$$

From equation (1)

$$
\begin{aligned}
3 x & =51-2 y \\
x & =\frac{51-2 y}{3}
\end{aligned}
$$

Substitute in equation (2)

$$
\begin{aligned}
& \frac{2(51-2 y)}{3}+3 y=39 \\
& \frac{2(51-2 y)}{3}+\frac{3 y}{1}=\frac{39}{1} \\
& \times 3 \\
& 2(51-2 y)+3(3 y)=3(39) \\
& 102-4 y+9 y=117 \\
& 5 y=15 \\
& y=3
\end{aligned}
$$

Substitute $y=3$

$$
\begin{aligned}
x & =\frac{51-2(3)}{3} \\
& =15
\end{aligned}
$$

The above method was the method of substitution

Alternative Method:

Consider both equations as straight lines and draw the lines on the same axes.
In each case, we choose any two values of x and find the corresponding values of y. The x value chosen and the corresponding y value, represents the (x, y) coordinates of a point on the line. We need only two points to draw any straight line. We join these two points and can extend the line to any desired length.

$$
3 x+2 y=51
$$

$$
2 x+3 y=39
$$

\boldsymbol{x}	\boldsymbol{y}
11	9
17	0

x	y
0	13
9	7

The above method is the graphical method
(b) Data: $y=2 x+1$
(i) Required to complete: The table given, using the equation given. Solution:

$$
\begin{array}{ll}
\text { When } x=0 & \text { When } x=2 \\
y=2(0)+1 & y=2(2)+1 \\
=1 & =5
\end{array}
$$

When $x=3$

$$
\text { When } x=4
$$

$$
\begin{aligned}
y & =2(3)+1 \\
& =7
\end{aligned}
$$

$$
\begin{aligned}
y & =2(4)+1 \\
& =9
\end{aligned}
$$

The completed table looks like:

\boldsymbol{x}	0	1	2	3	4
\mathbf{y}	$\mathbf{1}$	3	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{9}$

(ii) Required to draw: The graph of $y=2 x+1$. Solution:

(iii) Required to state: The y-intercept for the graph of $y=2 x+1$.

Solution:

The y-intercept of $y=2 x+1$ is 1 , that is, the line $y=2 x+1$ cuts the $y-$ axis at $(0,1)$.

