NCSE MATHEMATICS PAPER 2
 YEAR 2013

Section I

1. (a) Required to calculate: The exact value of $\left(\frac{4}{7}-\frac{1}{3}\right) \times \frac{7}{10}$

Calculation:

$$
\begin{aligned}
& \frac{\frac{4}{7}-\frac{1}{3}}{\frac{3(4)-7(1)}{21}} \\
& =\frac{12-7}{21} \\
& \\
& =\frac{5}{21}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left(\frac{4}{7}-\frac{1}{3}\right) \times \frac{7}{10} & =\frac{\not p^{1}}{2 \not X_{3}} \times \frac{\not 一^{1}}{1 \theta_{2}} \\
& =\frac{1}{6} \text { (the exact value) }
\end{aligned}
$$

(b) Required to express: 2.125 as an improper fraction Solution:
$2.125=2+0.125$

$$
=2+\frac{125}{1000}
$$

$\frac{125}{1000}=\frac{1}{8}$

$$
\begin{aligned}
\therefore 2.125 & =2+\frac{1}{8} \\
& =2 \frac{1}{8} \\
& =\frac{17}{8} \text { (as an improper fraction) }
\end{aligned}
$$

(c) Required to express: 5678 in standard form Solution:
$5678=5678$.

We move the decimal point 3 places to the left to get 5.678.
Hence, $5678=5.678 \times 10^{3}$.
5.678 can be written as 5.68 to 2 decimal places or 5.7 to 1 decimal place.

Hence, 5678 can be written in standard form as 5.678×10^{3} (exactly) or approximated to 5.68×10^{3} or 5.7×10^{3}.
2. (a) Data: Ribbon is cut into two pieces in the ratio $3: 7$. The shorter piece is 45 cm .

Required to calculate: The length of the longer piece.
Calculation:
The shorter piece of the ribbon is represented by ' 3 parts' $=45 \mathrm{~cm}$.
Therefore, ' 1 part' $=\frac{45}{3}=15 \mathrm{~cm}$.
The longer piece of the ribbon $=7$ parts

$$
\begin{aligned}
& =15 \times 7 \\
& =105 \mathrm{~cm}
\end{aligned}
$$

(b) (i) Data: Bds $\$ 2.00 \equiv$ US $\$ 1.00$

Required to convert: Bds $\$ 140$ into US\$.
Solution:

$$
\text { Bds } \$ 2.00 \equiv \text { US } \$ 1.00
$$

\therefore Bds $\$ 1.00 \equiv \mathrm{US} \frac{1.00}{2.00}$

$$
\text { Hence, Bds } \begin{aligned}
\$ 140.00 & =\text { US } \frac{1.00}{2.00} \times 140 \\
& =\text { US } \$ 70.00
\end{aligned}
$$

(ii) Data: A tax of 2\% is charged on the transaction when Bob converts Bds \$140.00 into US \$.
Required to calculate: The amount that Bob received after tax. Calculation:
Tax $=2 \%$ of $\$ 70.00$

$$
\begin{aligned}
& =\frac{2}{100} \times \text { US } \$ 70.00 \\
& =\text { US } \$ 1.40
\end{aligned}
$$

\therefore Amount received after tax $=\mathrm{US}(\$ 70.00-\$ 1.40)$

$$
=\text { US } \$ 68.60
$$

OR

Tax $=2 \%$
\therefore Amount received $=(100-2) \%$ of US $\$ 70.00$

$$
\begin{aligned}
& =98 \% \text { of US } \$ 70.00 \\
& =\frac{98}{100} \times \text { US } \$ 70.00 \\
& =\text { US } \$ 68.60
\end{aligned}
$$

3. (a) Data:

Mapping diagram between the members of set X and the members of set Y
(i) Required to state: The relationship between x and y. Solution:
Assuming that $x \in X$ and $y \in Y$, we notice

$$
\begin{aligned}
& 5 \rightarrow 25 \\
&=(5)^{2} \\
& 7 \rightarrow 49
\end{aligned}=(7)^{2}
$$

i.e. $x \rightarrow(x)^{2}=y$

We arrive at the relationship $y=x^{2}$.
(ii) Required To State: The image of 9.

Solution:

When $x=9$

$$
\begin{aligned}
y & =(9)^{2} \\
& =81
\end{aligned}
$$

\therefore The image of 9 is 81 .
(iii) Required to state: If the relation is one to one, many to one or one to many.

Solution:

Each element of X is mapped onto one element of Y and each element of Y is mapped onto only one element of X .

Hence, the relation is one to one.

NOTE:

In the relation $y=x^{2}$

If negative integers are considered, then the relation could be many to one.
(b) Data: Lucas ran 400 m in 50 seconds.

Required to calculate: Lucas' speed in metres per second.
Calculation:

$$
\begin{aligned}
\text { Speed } & =\frac{\text { Distance }}{\text { Time }} \\
\therefore \text { Lucas' Speed } & =\frac{400 \mathrm{~m}}{50 \mathrm{~s}} \\
& =8 \mathrm{~ms}^{-1}
\end{aligned}
$$

4. Data: Deposit from Mr. Brown $=\$ 12000$

Simple interest rate at bank $=8 \%$
(a) Required to calculate: Time taken to earn interest of \$2 400

Calculation:
Recall:
Simple Interest $=\frac{\text { Principal } \times \text { Rate } \times \text { Time }}{100}$
$\therefore 100 \times S . I .=P \times R \times T$

$$
T=\frac{100 \times S . I .}{P \times R}
$$

Time, $T=\frac{100 \times 2400}{12000 \times 8}$ years

$$
=2 \frac{1}{2} \text { years }
$$

(b) Required to calculate: The amount earned after 5 years.

Calculation:
Assuming that the question means the amount of interest earned on the deposit, we can calculate this interest in several ways.

Method 1
Interest earned in $2 \frac{1}{2}$ years $=\$ 2400$
\therefore Interest earned in 5 years $\left(2 \times 2 \frac{1}{2}\right)$ will be $\$ 2400 \times 2=\$ 4800$
Method 2
Interest earned in 1 year $=8 \%$ of $\$ 12000$

$$
\begin{aligned}
& =\frac{8}{100} \times \$ 12000 \\
& =\$ 960
\end{aligned}
$$

\therefore Interest earned in 5 years $=\$ 960 \times 5$

$$
=\$ 4800
$$

Method 3

$$
\begin{aligned}
\text { S.I. } & =\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100} \\
& =\frac{\$ 12000 \times 8 \times 5}{100} \\
& =\$ 4800
\end{aligned}
$$

5. Data: Pack of 8 exercise books cost $\$ x$. Pen costs $\$ 12$ more than a pack of exercise books.
(a) Required to write: The cost of 1 pen, in terms of x.

Solution:

Cost of 1 pack of books $=\$ x$
Cost of 1 pen is $\$ 12$ more than the cost of 1 pack of books $=\$(x+12)$
(b) Data: The cost of 1 pack of exercise books and 1 pen $=\$ 76$

Required to express: The above information as an equation in x.

Solution:

Cost of 1 pack of books and 1 pen $=x+(x+12)$

$$
\begin{array}{r}
\therefore x+(x+12)=76 \\
2 x+12=76
\end{array}
$$

(c) Required to solve: The equation in (b) to find the cost of 1 exercise book. Solution:

$$
\begin{aligned}
2 x+12 & =76 \\
\therefore 2 x & =76-12 \\
& =64 \\
x & =\frac{64}{2} \\
& =32
\end{aligned}
$$

\therefore Cost of 1 pack of 8 exercise books is $\$ 32$.
\therefore Cost of 1 exercise book $=\frac{\$ 32}{8}$

$$
=\$ 4
$$

6. (a) Data: A pie chart showing how Miss Chen spends her monthly income.

(i) Required to calculate: Miss Chen's loan payment.

Calculation:

The angle of the sector representing loan is 90°.
\therefore Amount of the loan $=\frac{\angle \text { of sector representing loan }}{360^{\circ}} \times$ Total Income

$$
\begin{aligned}
& =\frac{90^{\circ}}{360^{\circ}} \times \$ 6000 \\
& =\$ 1500
\end{aligned}
$$

(ii) Required to calculate: The value of x. Calculation:
The sum of all the angles of the sectors of the pie chart must total 360°.

$$
\begin{aligned}
& \therefore x^{\circ}+90^{\circ}+120^{\circ}+90^{\circ}=360^{\circ} \\
& x^{\circ}=360^{\circ}-\left(90^{\circ}+120^{\circ}+90^{\circ}\right) \\
& x^{\circ}=60^{\circ}
\end{aligned}
$$

Hence, $x=60$.
(b) Data:

Trapezium ABCD with BC parallel to $\mathrm{AD}, A \hat{C} B=35^{\circ}$ and $\mathrm{AC}=\mathrm{AD}$.
Required to calculate: The value of x.

Calculation:

The angle $C A D=35^{\circ}$ (Alternate angles)

Since $A C=A D$, triangle $A C D$ is isosceles.
$A \hat{D} C=A \hat{C} D=x^{\circ}$ (Base angles of an isosceles triangle are equal)
$\therefore x^{\circ}+x^{\circ}+35^{\circ}=180^{\circ}$ (Sum of the interior angles in a triangle $=180^{\circ}$)
$\therefore 2 x^{\circ}=180^{\circ}-35^{\circ}$
$2 x^{\circ}=145^{\circ}$
$x=\frac{145}{2}$
$=72 \frac{1}{2}$

Section II

7. (a) Data: Prices of a television by hire purchase and by cash payments.

HIRE PURCHASE

Down Payment \$480.00

Monthly Installment of $\$ 320.00$
for $2 \frac{1}{2}$ years.

CASH PURCHASE
Cash Price $\$ 9800.00$
$+$
10\% Discount on Cash Price
(i) Required to calculate: The total cost of the television under hire purchase.

Calculation:

Down payment $=\$ 480$

$$
\begin{aligned}
2 \frac{1}{2} \text { years } & =2 \frac{1}{2} \times 12 \\
& =30 \text { months }
\end{aligned}
$$

Total monthly installments $=\$ 320 \times 30$

$$
=\$ 9600
$$

\therefore Total amount paid by the hire purchase plan or method $=\$ 480+\$ 9600$ $=\$ 10080$
(ii) Required to calculate: The amount paid by using the cash purchase method.
Calculation:
Marked price $=\$ 9800$
Discount on marked price is 10%.
$=\frac{10}{100} \times \$ 9800$
$=\$ 980$

$$
\begin{aligned}
\text { Cash Price } & =\text { Marked Price }- \text { Discount } \\
& =\$ 9800-\$ 980 \\
& =\$ 8820
\end{aligned}
$$

OR

Since there is a 10% discount then the customer, who is paying cash, will be paying $(100-10) \%$ of the marked price.
This will be 90% of \$ 9800

$$
\begin{aligned}
& =(90 / 100) \times \$ 9800 \\
& =\$ 8820
\end{aligned}
$$

(iii) Required to calculate: The amount saved by using the cash payment plan as opposed to the hire purchase plan.

Calculation:

Cost by the hire purchase plan $=\$ 10080$
Cost by the cash purchase plan $=\$ 8820$
\therefore Difference $=\$ 10080-\$ 8820$

$$
=\$ 1260
$$

Jamal would save \$1 260 if he used the cash purchase plan over the hire purchase plan.
(b) Data: Cost of 1 T-shirt $=\$ 15.00$. Total cost of T-shirts $=\$ 2625.00$
(i) Required to calculate: The number of T-shirts bought. Calculation:
Number of T-shirts bought $=\frac{\text { Total cost of all T-shirts }}{\text { Cost of } 1 \text { T-shirt }}$

$$
=\frac{\$ 2625}{\$ 15}
$$

$$
=175
$$

(ii) Data: Selling price of 1 T-shirt $=\$ 22.00$.

Required to calculate: Profit made after selling all the T-shirts Calculation:
Profit on 1 T-shirt $=$ Selling price - Cost price

$$
\begin{aligned}
& =\$ 22-\$ 15 \\
& =\$ 7
\end{aligned}
$$

Total profit made $=$ Profit on 1 T-shirt \times No. of T-shirts

$$
\begin{aligned}
& =\$ 7 \times 175 \\
& =\$ 1225
\end{aligned}
$$

OR
Profit $=$ Total selling price - Total cost price
$=\$ 3850-\$ 2625$
$=\$ 1225$
8. (a) Data: Equation $y=3 x-4$ represents the relationship between variables x and y and an incomplete table of values.
(i) Required To Complete: The incomplete table given.

Solution:
When $x=4$

$$
y=3(4)-4=8
$$

When $x=6$

$$
y=3(6)-4=14
$$

When $x=8$

$$
y=3(8)-4=20
$$

\therefore The completed table will be

\boldsymbol{x}	2	4	6	8
\boldsymbol{y}	2	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{2 0}$

(ii) Required To Plot: The points from the table and draw the graph of $y=3 x-4$.

Solution:

A convenient scale to use on the y or vertical axis is 1 block $\equiv 2$ units. The points are plotted and the graph of $y=3 x-4$ for the points on the table is shown.

(iii) Required To Determine: From the graph drawn, the value of y when $x=5$.

Solution:

A vertical line at $x=5$ is drawn to meet the line $y=3 x-4$.
At the point where the vertical line meets the line $y=3 x-4$, a horizontal is drawn to meet the y or vertical axis. The value of y is read off.

When $x=5, y=11$ (by read off).
(b) Data: Diagram showing a tree, a bird at the top and Matthew standing on the ground.

Required to calculate: The height of the tree

Calculation:

Let the coconut tree be of height $h \mathrm{~m}$.

$$
\begin{aligned}
\tan \theta & =\frac{\mathrm{opp}}{\mathrm{adj}} \\
\tan 59^{\circ} & =\frac{B G}{M G} \\
& =\frac{h}{60} \\
\therefore h & =60 \times \tan 59^{\circ}
\end{aligned}
$$

Height of tree $=99.856 \mathrm{~m}$

$$
=99.86 \mathrm{~m} \text { to } 2 \text { decimal places }
$$

(NOTE: This is not a realistic figure for the height of a coconut tree)
9. (a) Data: Cylindrical barrel with given dimensions.

$$
\pi=\frac{22}{7}
$$

(i) Required to calculate: The volume, in cm^{3}, of the barrel. Calculation:
Volume of a cylinder $=\pi r^{2} h$
$r=$ radius $=\frac{28}{2}=14 \mathrm{~cm}$
$h=$ height $=1 \mathrm{~m}=1 \times 100=100 \mathrm{~cm}$

$$
\begin{aligned}
\therefore V & =\left(\frac{22}{7} \times(14)^{2} \times 100\right) \mathrm{cm}^{3} \\
& =61600 \mathrm{~cm}^{3}
\end{aligned}
$$

(ii) Required to calculate: The number of containers, each holding 12320 cm^{3} will be required to fill the barrel.

Calculation:

No. of containers required $=\frac{\text { Volume of barrel }}{\text { Volume of each container }}$

$$
\begin{aligned}
& =\frac{61600}{12320} \\
& =5
\end{aligned}
$$

(b) Data: Table showing the preferred snacks by students in a class.

Type of snacks	Chocolate	Peanuts	Donuts	Biscuits	Fruits
Number of students	8	6	9	2	5

(i) Required to find: The favourite snack of the students in the survey. Solution:
The favourite snack is donuts since more students chose donuts than any other snack.
(ii) Required to calculate: How many more students chose chocolate than fruits.
Calculation:
Number of students who chose chocolate $=8$
Number of students who chose fruits $=5$
Difference $=8-5$

$$
=3
$$

$\therefore 3$ more students chose chocolate than fruits.
(iii) Required to calculate: The total number of students in the survey. Calculation:
The number of students in the survey $=8+6+9+2+5$

$$
=30
$$

(c) Data: An ordinary fair die is thrown.
(i) Required to list: All the possible outcomes.

Solution:

All the possible outcomes are 1 or 2 or 3 or 4 or 5 or 6 .
(ii) Required to calculate: The probability of obtaining an odd number. Calculation:
The probability of obtaining an odd number $=\frac{\text { No. of odd numbers }}{\text { No. of possible outcomes }}$
The possible odd numbers are 1,3 or 5 .
The possible outcomes are $1,2,3,4,5$, or 6 .
$P($ Odd numbers $)=\frac{3}{6}$

$$
=\frac{1}{2}
$$

