NCSE MATHEMATICS PAPER 2

YEAR 2010
Section I

1. (a) Required to calculate: The exact value of $1 \frac{1}{2}+\left(\frac{1}{4} \times 1 \frac{3}{5}\right)$

Calculation:

Working first, the part of the question that is written within brackets:

$$
\begin{aligned}
\frac{1}{4} \times 1 \frac{3}{5} & =\frac{1}{4} \times \frac{8}{5} \\
& =\frac{2}{5}
\end{aligned}
$$

$$
\text { And so, } 1 \frac{1}{2}+\left(\frac{1}{4} \times 1 \frac{3}{5}\right)=1 \frac{1}{2}+\frac{2}{5}
$$

$$
1 \frac{1}{2}+\frac{2}{5}
$$

$$
1 \frac{5(1)+2(2)}{10}=1 \frac{9}{10}(\text { exact value })
$$

(b) (i) Required to calculate: The exact value of $(0.4)^{2} \times 3.7$

Calculation:

$$
\begin{aligned}
(0.4)^{2} & =0.4 \times 0.4 \\
& =0.16
\end{aligned}
$$

Hence $(0.4)^{2} \times 3.7=0.16 \times 3.7$
$0.16 \times$
$\frac{3.7}{48}$
112
.592
$\therefore(0.4)^{2} \times 3.7=0.592$ (exact value)
(ii) Required to express: 0.167 in standard form. Solution:

$$
0.167
$$

Move the decimal point 1 place to the right, which is equivalent to dividing by 10 .
That is, $0.167=1.67 \div 10$ and is hence 1.67×10^{-1} when expressed in standard form.
2. (a) Data: Heights of two toddlers are in the ratio 7:9.

The height of the shorter toddler $=63 \mathrm{~cm}$.
Required to calculate: The height of the taller toddler
Calculation:
Let the height of the taller toddler be $h \mathrm{~cm}$.
Then,

$$
\begin{aligned}
7: 9 & =63: h \\
\frac{7}{9} & =\frac{63}{h} \\
\therefore 7 \times h & =63 \times 9 \\
\therefore h & =\frac{63 \times 9}{7} \\
& =81
\end{aligned}
$$

\therefore Height of the taller toddler $=81 \mathrm{~cm}$.
(b) Data: Ben's salary is $\$ 600$ basic wage plus 5% commission on sales over $\$ 1000$. Sales in a particular week was $\$ 3160$.
Required to calculate: Ben's total earnings for that week

Calculation:

Ben's total earnings is (Basic wage + Commission)
Commission is 5% on sales over $\$ 1000$.
\therefore Commission is 5% of $(\$ 3160-\$ 1000)$

$$
\begin{aligned}
& =\frac{5}{100} \times \$ 2160 \\
& =\$ 108
\end{aligned}
$$

\therefore Ben's total earnings for that week was $\$ 600+\$ 108=\$ 708$
3. Data: Venn diagram illustrating students who own cats and dogs as pets.
$C=\{$ Students owning cats $\}$
$D=\{$ Students owning dogs $\}$

(a) (i) Required to find: The number of students who own both cats and dogs. Solution:
This is shown shaded on the diagram by the region or subset where C and D intersect.

The number of students who own both cats and dogs is 3 .
(ii) Required to describe: $C^{\prime} \cap D$ Solution:
C^{\prime} is the set of elements in U but not in C, that is, $C^{\prime}=\{$ Students who do not own cats $\}$
$\therefore C^{\prime} \cap D=\{$ Students who do not own cats and own dogs $\}$
$\therefore C^{\prime} \cap D$ is the set of students who own only dogs.
(b) Data: Diagram with dimensions as shown.

(i) Required to calculate: The length of $D E$. Calculation:
Length of $E A=$ Length of $E B$ - Length of $A B$ $A B=6 \mathrm{~cm}$ (opposite sides of parallelogram $A B C D$ are equal in length)

$$
\begin{aligned}
\therefore E A & =9-6 \\
& =3 \mathrm{~cm} \\
A D & =B C \\
& =5 \mathrm{~cm} \text { (opposite sides of parallelogram } A B C D \text { are equal in length) }
\end{aligned}
$$

Consider the right angled triangle $A E D$.

$$
\begin{aligned}
E D^{2}+(3)^{2} & =(5)^{2} \quad \text { (Pythagoras' Theorem) } \\
\therefore E D^{2} & =(5)^{2}-(3)^{2} \\
& =25-9 \\
& =16 \\
\therefore E D & =\sqrt{16} \\
& =4 \mathrm{~cm}
\end{aligned}
$$

(ii) Required to calculate: Area of trapezium $B C D E$. Calculation:

Area of trapezium
$=\frac{1}{2}($ Sum of parallel sides $) \times$ Perpendicular distance between them

$$
\text { Area of } \begin{aligned}
B C D E & =\frac{1}{2}(6+9) \times 4 \\
& =30 \mathrm{~cm}^{2}
\end{aligned}
$$

4. (a) Data: Mr. Singh travels at $80 \mathrm{kmh}^{-1}$ for a distance of $d \mathrm{~km}$.
(i) Required to find: An expression, in d, for the time taken.

Solution:

Time taken $=\frac{\text { Total distance covered }}{\text { Average speed }}$

$$
\begin{aligned}
& =\frac{d \mathrm{~km}^{80 \mathrm{kmh}^{-1}}}{=\frac{d}{80} \text { hours }}
\end{aligned}
$$

(ii) Data: Time taken $=30$ minutes

Required to calculate: d
Calculation:
Time $=30$ minutes

$$
\begin{aligned}
& =\frac{30}{60} \text { hours } \\
& =\frac{1}{2} \text { hour }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{d}{80}=\frac{1}{2} \\
& \begin{aligned}
2 \times d & =80 \times 1 \\
\therefore d & =\frac{80}{2} \mathrm{~km} \\
& =40 \mathrm{~km}
\end{aligned}
\end{aligned}
$$

(b) Data: $C=\frac{5}{9}(F-32), C=$ temperature in ${ }^{\circ} \mathrm{C}$ and $F=$ temperature in ${ }^{\circ}$ Fahrenheit. Required to convert: $95^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$.
Solution:
$F=95$
$C=\frac{5}{9}(95-32)$
$=\frac{5}{9}(63)$
$=\frac{5 \times 63}{9}{ }^{\circ} \mathrm{C}$
$=35^{\circ} \mathrm{C}$

Hence, $95^{\circ} \mathrm{F}$ is equivalent to $35^{\circ} \mathrm{C}$.
5. (a) Data: A relation maps input and output elements in the table shown.

INPUT	OUTPUT
\boldsymbol{x}	\boldsymbol{y}
1	2
2	5
4	\square
5	26

(i) Required to complete: The table given. Solution:
To complete the table, we should try to derive the relationship that connects y and x.

Notice when $x=$ odd, $y=$ even
Notice when $x=$ even, $y=$ odd
The y value appears to be a term in x added to 1
Notice y is larger than x. Hence, x is increased by either multiplying by a number or adding a number.

Observation:

When $y=2$ and $x=1$

$$
2=(1)^{2}+1
$$

When $y=5$ and $x=2$

$$
5=(2)^{2}+1
$$

When $y=26$ and $x=5$

$$
26=(5)^{2}+1
$$

\therefore When $x=4$

$$
\begin{aligned}
y & =(4)^{2}+1 \\
& =17
\end{aligned}
$$

\therefore The missing element in \square is 17 .
(ii) Required to find: The relation that connects x and y. Solution:
The relation that connects x and y is $y=x^{2}+1$.
(b) Required to: Draw and label an arrow diagram to represent the above relation. Solution:

6. Data: The diagram below shows the plane shape $O X Y Z$ with coordinates, $O(0,0)$, $X(6,2), Y(3,3)$ and $Z(3,6)$.

(a) Required to draw: The image $O^{\prime} X^{\prime} Y^{\prime} Z^{\prime}$ of $O X Y Z$ after a reflection in the y-axis. Solution:

$O^{\prime}=(0,0) \quad$ (is an invariant point)
$X^{\prime}=(-6,2)$
$Y^{\prime}=(-3,3)$
$Z^{\prime}=(-3,6)$
(b) Data: Y is translated to Y^{\prime} by 2 units parallel to the x - axis and -6 units parallel to the y-axis.
(i) Required to locate: Y^{\prime} Solution:

(ii) Required to state: The coordinates of Y^{\prime}. Solution:
By drawing, we can read off the coordinates of Y^{\prime} as $(5,-3)$.

OR

Coordinates of Y are $(3,3)$.

$$
\begin{aligned}
& \therefore\binom{3}{3} \xrightarrow{T=\binom{2}{-6}}\binom{3+2}{3+-6}=\binom{5}{-3} \\
& \therefore Y^{\prime}=(5,-3)
\end{aligned}
$$

Section II

7. (a) (i) Data: Cost to produce 1 chicken pie $=\$ 1.25$

Required to calculate: The cost to produce 20 chicken pies Calculation:
Cost to produce 1 chicken pie $=\$ 1.25$
\therefore Cost to produce 20 chicken pies $=\$ 1.25 \times 20$

$$
=\$ 25.00
$$

(ii) Data: Selling price of 1 chicken pie $=\$ 3.00$

Required to calculate: Profit on selling all 20 chicken pies.

Calculation:

The total selling price on all 20 chicken pies at $\$ 3.00$ each $=\$ 3.00 \times 20$

$$
=\$ 60.00
$$

Total profit $=$ Total amount received on sales - Total cost of production

$$
\begin{aligned}
& =\$ 60.00-\$ 25.00 \\
& =\$ 35.00
\end{aligned}
$$

(b) Data: Cafeteria produces fruit punch at $\$ 2.50$ per bottle and sells at $\$ 4.00$ per bottle. Cafeteria produces 20 bottles and sells 14 bottles.

Required to calculate:

Profit or loss on the production of fruit punch

Calculation:

Total cost of production of 20 bottles of fruit punch at $\$ 2.50$ each $=\$ 2.50 \times 20$

$$
=\$ 50.00
$$

Total earned on selling 14 bottles of fruit at $\$ 4.00$ each $=\$ 4.00 \times 14$

$$
=\$ 56.00
$$

Amount earned on sales $>$ Total spent on production.
\therefore A profit is realised.
Profit $=$ Total earned on sales - Total spent on production
$=\$ 56.00-\$ 50.00$
$=\$ 6.00$
(c) Data: Scores obtained by 30 students in a spelling test.

1	0	4	5	4	4	3	1	5	4	3	2	2	1	3
5	5	3	4	3	4	3	3	3	0	2	3	2	2	2
Required to complete: The following table.														

Test Score	Frequency
0	2
1	
2	
3	
4	
5	

Solution:

By checking the set of values given in the raw data, we obtain:

Test Score, \boldsymbol{x}	Frequency, \boldsymbol{f}
0	2
1	3
2	6
3	9
4	6
5	4
	$\sum f=30$

(ii) Required to find: The number of students who spelt 2 words correctly. Solution:
From the table, the number of students who spelt exactly two words correctly is 6 .
(iii) Required to calculate: The number of students who spelt 3 or more words correctly.
Calculation:
The number of students who spelt 3 or more words correctly
$=$ Number who spelt 3 words correctly

+ Number who spelt 4 words correctly
+ Number who spelt 5 words correctly
$=9+6+4$
$=19$

8. Data: The diagram below shows the graphs of two linear functions.

(a) Required to state: The coordinates of B Solution:
The line 2 cuts the y-axis at B and at the point 3 .
$\therefore B$ has coordinates $(0,3)$.
(b) Required to state: The coordinates of the point of intersection of the two linear graphs.
Solution:
The two linear graphs intersect at C. Therefore C has coordinates $(1,5)$.
(c) Data: The equation of line 1 is suggested to be $y=2 x+3$ by Sham and $y=-x+6$ by Brian.
Required to determine: Whether Sham or Brian is correct
Solution:
By observation, line 1 has a negative gradient and Sham's suggestion of equation $y=2 x+3$ has a positive gradient of 2 . (Expressed in the form $y=m x+c$, where $m=2=$ gradient)
\therefore Sham is incorrect and we deduce, by elimination, that Brian is correct.

OR

Determining the equation of line 1 :
Using $C=(1,5)$ and $D=(6,0)$ to determine the gradient of line 1 .
Gradient $=\frac{0-5}{6-1}$
$=\frac{-5}{5}$

$$
=-1
$$

Line 1 cuts the $y-$ axis at 6 .
\therefore Equation of line 1 in the form $y=m x+c$ is $y=-1 x+6$, which is, $y=-x+6$, where $m=-1$ and $c=6$.
\therefore Brian is correct.

OR

We could have chosen a point, say $(6,0)$ and use $\frac{y-0}{x-6}=-1$ to obtain the equation of the line.
$y-0=-1(x-6)$
$y=-x+6$
We see that Brian is correct
(d) Data: In the diagram below, the line QR is parallel to the line ST and angle KLQ $=55^{\circ}$ and $\mathrm{MNO}=70^{\circ}$.

[^0](ii) Required to calculate: NMO Calculation:
$\mathrm{NMO}=55^{\circ}$
(Corresponding angles to MÊP)
(iii) Required to calculate: OPR

Calculation:
Consider \triangle NLP

$$
\begin{aligned}
N \hat{P L} & =180^{\circ}-\left(70^{\circ}+55^{\circ}\right) \\
& =55^{\circ}
\end{aligned}
$$

$\left(\right.$ Sum of angles in a triangle $\left.=180^{\circ}\right)$

$$
\begin{aligned}
N \hat{P} R & =O \hat{P} R \text { (the same angle) } \\
& =180^{\circ}-55^{\circ} \\
& =125^{\circ}
\end{aligned}
$$

(Angles in a straight line)

9. (a) (i) Data: The diagram shows a ladder leaning against a wall.

Required to calculate: h
Calculation:
Consider $\triangle P Q R$

$$
\begin{aligned}
(h)^{2}+(6)^{2} & =(10)^{2} \\
\therefore h^{2} & =100-36 \\
& =64 \\
\therefore h & =\sqrt{64} \\
& =8 \mathrm{~m}
\end{aligned}
$$

(Pythagoras' Theorem)
(ii) Required to calculate: The angle that the ladder makes with the ground. Calculation:
The angle required is $R \hat{P} Q$.

Let $R \hat{P} Q=\theta$

$$
\begin{aligned}
\sin \theta & =\frac{8}{10} \\
\therefore \theta & =\sin ^{-1}\left(\frac{8}{10}\right) \\
& =53.13^{\circ} \\
& =53.1^{\circ} \text { to the nearest } 0.1^{\circ}
\end{aligned}
$$

OR

$$
\begin{aligned}
& \cos \theta=\frac{6}{10} \\
& \begin{aligned}
& \therefore \theta=\cos ^{-1}\left(\frac{6}{10}\right) \\
&=53.13^{\circ} \\
&=53.1^{\circ} \text { to the nearest } 0.1^{\circ} \\
& \text { OR }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =\frac{8}{6} \\
\therefore \theta & =\tan ^{-1}\left(\frac{8}{6}\right) \\
& =53.13^{\circ} \\
& =53.1^{\circ} \text { to the nearest } 0.1^{\circ}
\end{aligned}
$$

(b) (i) Data: The cuboid below represents a closed box with the following dimensions: length $=60 \mathrm{~cm}$, width $=30 \mathrm{~cm}$ and height $=25 \mathrm{~cm}$.

Required to Draw: A net of the cuboid clearly showing the dimension of each face

Solution:

First, we name the vertices A, B, C, D, P, Q, R and S as shown.

Cutting along the vertical sides $A P, B Q, C R$ and $D S$, one of the many possible nets can be obtained.
In this case, the net looks like:

(ii) Required to calculate: The total surface area of the cuboid, using the net drawn.

Calculation:

Let us name the six faces $\mathrm{A}-\mathrm{F}$ as shown.
Area of $\mathrm{A}=\mathrm{Area}$ of D (faces A and D are congruent)
Area of $\mathrm{B}=$ Area of F (faces B and F are congruent)
Area of C = Area E (faces C and E are congruent)

Area of A and D $=2 \times\{30 \times 60\}$

$$
=3600 \mathrm{~cm}^{2}
$$

Area of B and $F=2 \times\{25 \times 60\}$

$$
=3000 \mathrm{~cm}^{2}
$$

Area of C and $\mathrm{E}=2 \times\{30 \times 25\}$

$$
=1500 \mathrm{~cm}^{2}
$$

\therefore Total surface area of the cuboid is the sum of the areas of all six faces

$$
\begin{aligned}
& =3600+3000+1500 \mathrm{~cm}^{2} \\
& =8100 \mathrm{~cm}^{2}
\end{aligned}
$$

[^0]: (i) Required to calculate: ML̂P Calculation:
 $\mathrm{ML̂} P=K \hat{L} Q$ $=55^{\circ}$
 (Vertically opposite angles)

