11. GEOMETRIC CONSTRUCTIONS

GEOMETRIC INSTRUMENTS

In this chapter, we will learn how to construct plane figures. A construction is an accurate drawing, the accuracy of which depends on the geometrical instruments used to create the drawing. In geometry, when we are asked to construct a plane figure, we are expected to use the appropriate geometrical instruments. A pair of compasses, a ruler, a setsquare and a protractor are common instruments used in drawing and constructing plane figures.

Constructing Angles

Before we can construct figures we must learn to construct angles using only a pair of compasses, a pencil and a ruler.

Constructing an angle of 60°

We shall construct the angle at the point A, on the straight line shown below.

1. With center A, draw an arc, cutting the straight line at B.

2. With center B and the same radius as before, draw another arc as to cut the first arc at C.

3. Join A to C. The angle $C A B=60^{\circ}$

We may confirm this by measurement with the protractor. We can also show that the triangle $A B C$ is equilateral and all its interior angles are equal to 60°.

Constructing an angle of 120°

To construct an angle of 120°, we may construct an angle of 60° and use the adjacent angle at the point of construction. This is because the angle in a straight line is 180°. Alternatively, we may follow the above steps for constructing a 60° angle then mark off another 60^{0} with the pair of compasses using the same radii. Both methods are shown below.

Construct 60° and use the adjacent angle.

Construct two adjacent angles of 60°.

Constructing the bisector of an angle

We wish to bisect the angle at A.

1. With center A, draw an arc to cut the arms of the angle, say, at B and at C.

2. With center B and afterwards C and the same radii, draw two arcs to cut each other at D. Join A to D.

$A D$ will be the bisector of \hat{A}, that is $B \hat{A} D=C \hat{A} D$. It is advisable to confirm this by measuring the two angles with the protractor.

Constructing an angle of 90°

To construct an angle of 90° at A, we carry out the following steps.

1. Place the compass point at A and draw an almost semi-circular arc so as to cut the straight line at B.

2. With center B and the same radius, draw an arc to cut the first arc at C.

3. With center C and again the same radius, draw another arc to cut the first arc at D.

4. With center C and afterwards D and the same radii, draw two arcs to cut at E.

Join E to $A . E A$ is the bisector of the 60° angle $D A C$. The angle $E A B=60^{\circ}+30^{\circ}=90^{\circ}$.

Constructing angles of 45° and 30°

If we wish to construct an angle of 45^{0} we first construct a 90° angle and then bisect it. Similar, if we wish to construct an angle of 30°, we first construct a 60° angle and then bisect it.

Drawing a line of a given length

During construction, if we have to draw a line, $A B=6.5 \mathrm{~cm}$ long, we are expected to draw a line longer than 6.5 cm . Then with our ruler and using the pair of compasses, we would cut off 6.5 cm , clearly showing the arcs. This is illustrated in the diagram, shown below.

Constructing the perpendicular bisector of a straight line

If $A B$ is a straight line and M is the midpoint of $A B$, then an infinite number of straight lines that may pass through M and all are bisectors of $A B$. However, only one of these lines will cut $A B$ at right angles and this is called the perpendicular bisector of $A B$. Hence, there is only one perpendicular bisector of a straight line.

We wish to construct the perpendicular bisector of the straight line, $A B$.

2. With center B and the same radius, we draw another arc to cut the first arc at C and at D.

3. Join C to D. Let $C D$ meet $A B$ at $M . C D$ is the perpendicular bisector of $A B$.

We may confirm all of the above by simple measurements using our geometrical apparatus.

Constructing the perpendicular to a line from a point outside the line

We are given a straight line and a point, P, that is not on the line. We wish to construct a perpendicular to the straight line, passing through P .

1. With center P, draw an arc to cut the given line at two points A and B.

2. With center A and afterwards B and the same radii draw two ares to cut at C.

3. Join P to C and let the line $P C$ meet the line $A B$ at X.

The angle at X is 90°, and so $P X$ is the perpendicular from P to $A B$, meeting $A B$ at X.
We may confirm this by measurement.

Constructing a line passing through a given point and parallel to a given line

The diagram below shows a straight line, $A B$ and a point P, not on the line. We wish to construct a line passing through P, parallel to $A B$.

1. Draw a line from P to any point on the line $A B$, meeting $A B$ at say, C.

2. At C, we draw an arc to cut $C P$ and $C A$ at D and at E.

3. With center P, we draw an arc with the same radius as that of $C E$ (or $C D$). This arc cuts $P C$ at F

4. With center F, we draw an arc with the same radius as that of $D E$. Let the arc cut the previous arc at G.

5. We join P to G. The line $P G$ is parallel to $A B$.

Constructing plane figures

We are now in a position to construct any figure given basic information about it. It is good practice to draw a sketch and plan the sequence of steps that are required to produce the figure.

Constructing triangles

To construct a triangle, we must be given three out of its six elements. They can be any of the following:

1. Three sides
2. Two sides and the included angle
3. Two angles and the side containing the angles and which is called the corresponding side

Example 1

Construct $\triangle A B C$ with $B C=4 \mathrm{~cm}$ and $A B=A C=$ 5 cm . Construct $A D$ such that $A D$ meets $B C$ at D and is perpendicular to $B C$.
Measure and state
(i) the length of $A D$
(ii) the size of $A \hat{B} C$.

Solution

Construct the line $B C=4 \mathrm{~cm}$. With center B and then C and a radius of 5 cm , draw two arcs to cut at A.

With center A, draw an arc to cut $B C$, then bisect this arc by to locate the point F. Join $A F$.

(i) $A D=5 \mathrm{~cm}$ (ii) angle $\mathrm{ABC}=68^{\circ}$

Example 2

Construct a triangle $A B C$ with $\mathrm{AB}=4.5 \mathrm{~cm}$,
$B C=6.5 \mathrm{~cm}$ and $A \hat{B} C=60^{\circ}$.
Measure and state the length of $A C$.

Solution

Draw $\mathrm{AB}=4.5 \mathrm{~cm}$. At B, construct $A \hat{B} C=60^{\circ}$. Cut off $\mathrm{BC}=6.5 \mathrm{~cm}$.

Join A to C so as to complete the triangle.

$\mathrm{AC}=6 \mathrm{~cm}$

Example 3
Construct triangle $E F G$, in which, $E G=4 \mathrm{~cm}$, $F \hat{E} G=60^{\circ}$ and $E \hat{G} F=90^{\circ}$. Measure and state
(i) the length of $E F$
(ii) the length of $F G$.

Solution

Constructing a parallelogram

A parallelogram has opposite sides parallel and equal. Once two alternate sides are given we do not need any more information on the sides. The opposite angles of a parallelogram are also equal, so we need to know only one interior angle to construct the parallelogram.

Example 4
Construct the parallelogram $P Q R S$ in which $P Q=7 \mathrm{~cm}, Q R=5 \mathrm{~cm}$ and $\hat{Q}=120^{\circ}$. Measure and state the lengths of both diagonals of $P Q R S$.

Solution

Construct $\mathrm{PQ}=7 \mathrm{~cm}$. At Q , construct an angle of 120°.

Extend the constructed line at Q (if necessary) and cut off $Q R=5 \mathrm{~cm}$.

Draw an arc with center $P, 5 \mathrm{~cm}$ long and from R draw an arc 7 cm long. The two arcs will then intersect at S. [The opposite sides of a parallelogram are both parallel and equal in length.]

$P R=10.3 \mathrm{~cm}$, (correct to 1 decimal place), by measurement.
$Q S=6.4 \mathrm{~cm}$, (correct, to 1 decimal place), by measurement.

