SECTION I

Answer ALL questions. All working must be clearly shown.

1. (a) Using a calculator, or otherwise, evaluate EACH of the following:

(i)
$$\frac{2\frac{1}{4}-1\frac{3}{5}}{3}$$

SOLUTION:

Required to evaluate:
$$\frac{2\frac{1}{4} - 1\frac{3}{5}}{3}$$

Solution:

Working the numerator first:
$$2\frac{1}{4} - 1\frac{3}{5} = \frac{9}{4} - \frac{8}{5}$$

$$= \frac{5(9) - 4(8)}{20}$$

$$= \frac{45 - 32}{20}$$

$$= \frac{13}{20}$$

So,
$$\frac{2\frac{1}{4} - 1\frac{3}{5}}{3} = \frac{\frac{13}{20}}{\frac{13}{20 \times 3}}$$

= $\frac{13}{20 \times 3}$
= $\frac{13}{60}$ (in exact form)

(ii) 2.14 sin 75°, giving your answer to 2 decimal places.

SOLUTION:

Required to evaluate: 2.14 sin 75° correct to 2 decimal places **Solution:**

$$2.14 \sin 75^{\circ} = 2.14 \times 0.965 9$$

= $2.06\frac{7}{2}$
= 2.07 (correct to 2 decimal places)

(b) Irma's take-home pay is \$4 320 per fortnight (every two weeks). Each fortnight Irma's pay is allocated according to the following table.

Item	Amount Allocated	
Rent	\$ <i>x</i>	
Food	\$629	
Other living expenses	\$2 <i>x</i>	
Savings	\$1 750	
Total	\$4 320	

(i) What is Irma's **annual** take-home pay? (Assume she works 52 weeks in any given year.)

SOLUTION:

Data: Table showing the allocation of Irma's \$4 320 per fortnight pay on various items.

Required to find: Irma's annual take-home pay

Solution:

Irma's pay is \$4 320 per fortnight.

There are 52 weeks in a year and which is $\frac{52}{2} = 26$ fortnights.

So, Irma's annual take-home pay = $$4 320 \times 26$

(ii) Determine the amount of money that Irma allocated for rent each month.

SOLUTION:

Required to determine: The amount of money Irma spends on rent each month

Solution:

$$x+629+2x+1750 = 4320 (data)$$

$$x+2x+2379 = 4320$$

$$3x = 4320-2379$$

$$3x = 1941$$

$$x = \frac{1941}{3}$$

$$x = 647$$

:. Allocation for rent per fortnight = \$x = \$647There are 2 fortnights per month.

So Irma's rent per month = $$647 \times 2 = 1294

$$=$$
 \$ 1 2 94

(iii) All of Irma's savings is used to pay her son's university tuition cost, which is \$150 000.

If Irma's pay remains the same and she saves the same amount each **month**, what is the minimum number of years that she must work in order to save enough money to cover her son's tuition cost?

SOLUTION:

Data: Irma's son's tuition costs \$150 000 and her pay and the amount of money she saves each month remains the same.

Required to find:

Solution:

Irma saves \$1 750 per fortnight.

So, each year, Irma saves $1750 \times 26 = 45500$

To save \$150 00 the number of years will be $\frac{150\ 000}{45\ 500} = 3.296$

If the number of years is to be taken as a positive integer then the number of years will be the next integer after 3.296 which is 4.

:. Irma must work for 4 years in order to save enough money to cover her son's tuition.

(After 3 years, Irma would not have saved up the amount)

2. (a) Simplify completely:

(i)
$$3p^2 \times 4p^5$$

SOLUTION:

Required to simplify: $3p^2 \times 4p^5$

Solution:

$$3p^2 \times 4p^5 = 3 \times 4 \times p^{2+5}$$
$$= 12p^7$$

(ii)
$$\frac{3x}{4y^3} \div \frac{21x^2}{20y^2}$$

SOLUTION:

Required to simplify:
$$\frac{3x}{4v^3} \div \frac{21x^2}{20v^2}$$

$$\frac{3x}{4y^3} \div \frac{21x^2}{20y^2} = \frac{3x}{4y^3} \times \frac{20y^2}{21x^2}$$

$$= \frac{\cancel{3} \times \cancel{20}^{5}}{\cancel{4} \times \cancel{21}_{7}} y^{2-3} x^{1-2}$$

$$= \frac{5x^{-1}y^{-1}}{7} \text{ or } \frac{5}{7xy}$$

(b) Solve the equation $\frac{3}{7x-1} + \frac{1}{x} = 0$.

SOLUTION:

Required to solve:
$$\frac{3}{7x-1} + \frac{1}{x} = 0$$

Solution:

$$\frac{3}{7x-1} + \frac{1}{x} = 0$$

$$\frac{3(x)+1(7x-1)}{x(7x-1)} = 0$$

$$\frac{3x+7x-1}{x(7x-1)} = 0$$
So
$$\frac{10x-1}{x(7x-1)} = 0$$

$$10x-1 = 0$$

$$10x-1 = 0$$

$$x = \frac{1}{10}$$

- (c) When a number, x, is multiplied by 2, the result is squared to give a new number. y.
 - (i) Express y in terms of x.

SOLUTION:

Data: A number, x, when multiplied by 2, the result is squared to give a new number. y.

Required to express: y in terms of x

Solution:

$$(2x)^2 = y$$
$$y = 4x^2$$

(ii) Determine the two values of x that satisfy the equation y = x AND the equation derived in (c) (i).

SOLUTION:

Required to determine: the two values of x that satisfy the equations y = x and $y = 4x^2$.

Solution:

$$y = x$$
 (data)

Substituting y = x in the equation of (i) we get:

$$x = 4x^2$$

So
$$4x^2 - x = 0$$

$$x(4x-1)=0$$

And
$$x = 0 \text{ or } 4x - 1 = 0$$

and
$$x = \frac{1}{4}$$

Hence,
$$x = 0$$
 or $\frac{1}{4}$.

3. (a) Using a ruler, a pencil and a pair of compasses only, construct the triangle NLM, in which LM = 12 cm, $\angle MLN = 30^{\circ}$ and $\angle LMN = 90^{\circ}$.

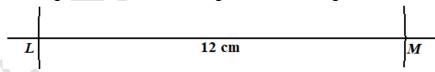
(Credit will be given for clearly drawn construction lines.)

SOLUTION:

Required to construct: Triangle *NLM* with LM = 12 cm, $\angle MLN = 30^{\circ}$ and $\angle LMN = 90^{\circ}$

Construction:

We cut off a segment 12 cm from a straight line drawn longer than 12 cm

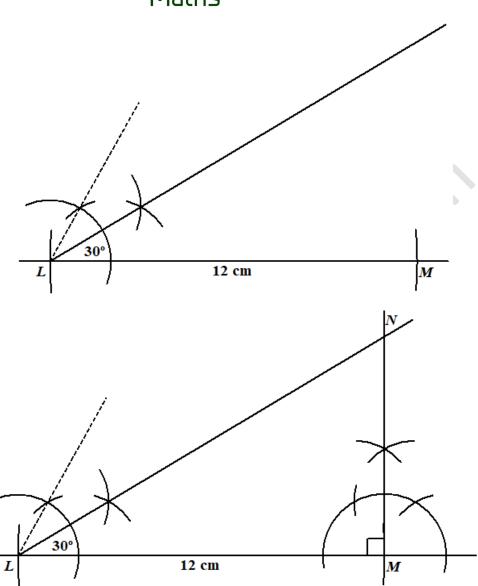


At the point L, we construct an angle of 60° and bisect this angle to obtain $\angle MLN = 30^{\circ}$

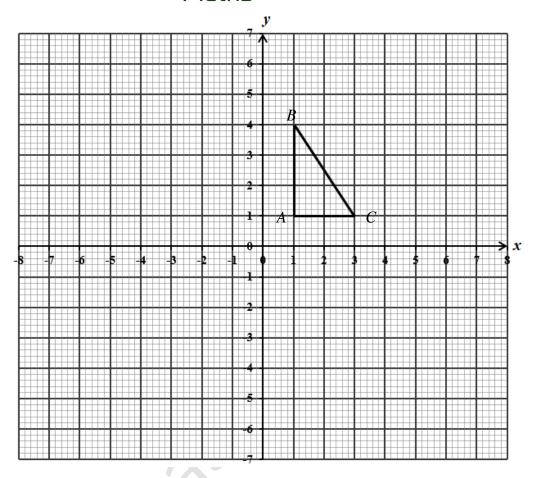
N has not yet been obtained but will lie on the line of bisection

At the point M, we construct an angle of 90°

The line from M and the line drawn from L will meet at N.



(b) Triangle ABC with vertices A(1, 1), B(1, 4) and C(3, 1) is shown on the diagram below.



 $\triangle ABC$ is mapped onto $\triangle LMN$ by a reflection in the x – axis followed by a reflection in the y – axis.

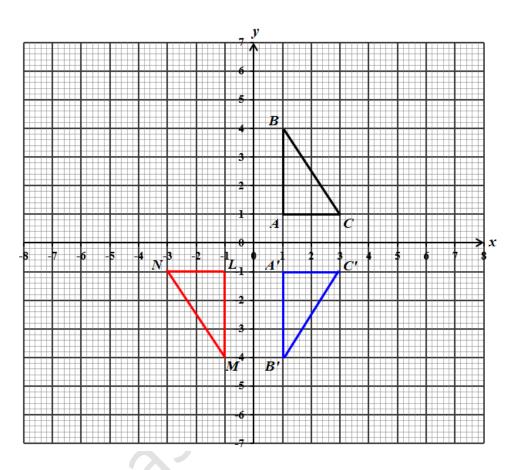
(i) On the diagram, draw and label ΔLMN .

SOLUTION:

Data: Diagram showing triangle ABC with vertices A(1, 1), B(1, 4) and C(3, 1). $\triangle ABC$ is mapped onto $\triangle LMN$ by a reflection in the x – axis followed by a reflection in the y – axis.

Required to draw: ΔLMN

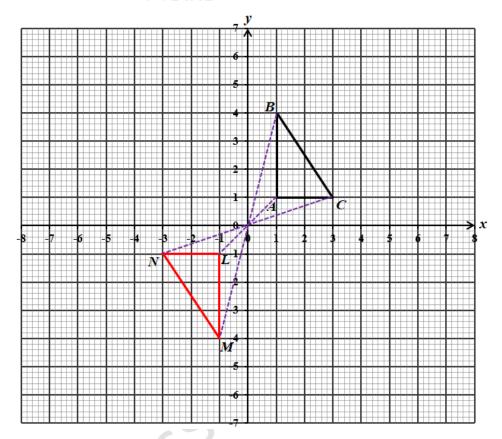
Diagram:



(ii) Describe fully a single transformation that maps $\triangle ABC$ onto $\triangle LMN$.

SOLUTION:

Required to describe: The single transformation that maps $\triangle ABC$ onto ΔLMN .



 ΔLMN is congruent to ΔABC and re-oriented with respect to ΔABC . By joining the object points to their corresponding image points we note that these lines all pass though O and which is the center of rotation. The angles CON or BOM or AOL are all 180^{0}

The transformation is a 180° clockwise or anti-clockwise rotation about O.

(iii) State the 2×2 matrix for the transformation that maps ΔABC onto ΔLMN .

SOLUTION:

Required to state: The 2×2 matrix for the transformation that maps $\triangle ABC$ onto $\triangle LMN$.

Solution:

The matrix maps A(1, 1) onto L(-1, -1); B(1, 4) onto M(-1, -4) and C(3, 1) onto N(-3, -1). Consider:

This transformation preserves order but changes direction. By inspection, we notice that:

$$B(1,4) \rightarrow M(-1,-4) \qquad \text{and} \qquad C(3,1) \rightarrow N(-3,-1)$$

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 \\ -4 \end{pmatrix} \qquad \text{and} \qquad \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$$

The 2×2 matrix which represents this transformation is $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

- **4.** (a) The quantity P varies inversely as the square of V.
 - (i) Using the letters P, V and k, form an **equation** connecting the quantities P and V.

SOLUTION:

Data: P varies inversely as the square of V.

Required to write: An equation connecting P and V

Solution:

So
$$P \propto \frac{1}{V^2}$$

Hence $P = k \times \frac{1}{V^2}$, where k is the constant of proportionality

$$P = \frac{k}{V^2}$$

(ii) Given that V = 3 when P = 4, determine the positive value of V when P = 1.

SOLUTION:

Data: When P = 4, V = 3

Required to determine: The value of V when P = 1.

Solution:

$$V = 3$$
 when $P = 4$

$$4 = \frac{k}{(3)^2}$$

So
$$k = 4 \times (3)^2$$
$$= 36$$

$$P = \frac{36}{V^2}$$

When P = 1:

$$1 = \frac{36}{V^2}$$

$$V^2 \times 1 = 36$$

$$V^2 = 36$$

$$V = \sqrt{36}$$

$$=\pm6$$

$$V > 0$$
 (data)

So,
$$V = 6$$
 only

(b) (i) Given that x is a real number, solve the inequality $-7 < 3x + 5 \le 7$.

SOLUTION:

Data: $-7 < 3x + 5 \le 7$ and x is a real number.

Required to solve: For x

Solution:

$$-7 < 3x + 5
-7 - 5 < 3x
-12 < 3x$$

$$(÷3)$$

$$-4 < x$$

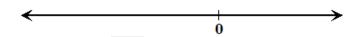
$$3x + 5 \le 7$$

$$3x \le 7 - 5$$

$$3x \le 2$$

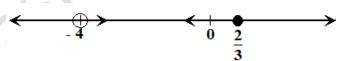
Hence,
$$-4 < x \le \frac{2}{3}$$
.

(ii) Represent your answer in (b) (i) on the number line shown below.



SOLUTION:

Required to represent: The solution to $-7 < 3x + 5 \le 7$ on a number line **Solution:**



- (c) The equation of a straight line is given as $\frac{x}{3} + \frac{y}{7} = 1$. This line crosses the y axis at Q.
 - (i) Determine the coordinates of Q.

SOLUTION:

Data: The line with equation $\frac{x}{3} + \frac{y}{7} = 1$ crosses the y – axis at Q.

Required to determine: The coordinates of Q

Solution:

A line crosses the y – axis at x = 0

Let x = 0

$$\frac{x}{3} + \frac{y}{7} = 1$$

$$\frac{0}{3} + \frac{y}{7} = 1$$

$$\frac{y}{7} = 1$$

$$y = 1 \times 7$$

$$y = 7$$

$$Q = (0, 7)$$

(ii) What is the gradient of this line?

SOLUTION:

Required to find: The gradient of the line $\frac{x}{3} + \frac{y}{7} = 1$.

Solution:

$$\frac{x}{3} + \frac{y}{7} = 1$$

$$\frac{y}{7} = -\frac{x}{3} + 1$$
(×7)
$$y = -\frac{7}{3}x + 7 \text{ is of the form } y = mx + c, \text{ where } m = -\frac{7}{3} \text{ is the gradient.}$$

5. The cumulative frequency distribution of the volume of petrol needed to fill the tanks of 150 different vehicles is shown below.

Volume (litres)	Cumulative Frequency
11 - 20	24
21 – 30	59
31 – 40	101
41 – 50	129
51 – 60	150

- (a) For the class 21 30, determine the
 - (i) the lower class boundary

SOLUTION:

Data: Cumulative frequency table showing the distribution of the volume of petrol needed to fill the tanks of 150 different vehicles.

Required to find: The lower class boundary for the class 21 - 30

Solution:

For the class 21 - 30:

21 – Lower class limit

30 – Upper class limit

If the volume is V, then $20.5 \le V < 30.5$, where 20.5 is the lower class boundary and 30.5 is the upper class boundary.

 \therefore The lower class boundary of the class interval 21 – 30 is 20.5.

(ii) class width

SOLUTION:

Required to find: The class width for the class 21 - 30.

Solution:

Class width = Upper class boundary - Lower class boundary

$$=30.5-20.5$$

$$=10$$

(b) How many vehicles were recorded in the class 31 - 40?

SOLUTION:

Required to find: The number of vehicles in the class 31 - 40.

Solution:

Volume (litres)	Frequency	Cumulative Frequency
:		•••
21 – 30		59
31 – 40	x	59 + x = 101
	:	:

So, the number of vehicles recorded in the class 31 - 40 will be 101 - 59 = 42.

(c) A vehicle is chosen at random from the 150 vehicles. What is the probability that the volume of petrol needed to fill the tank is **more** than 50.5 litres? **Leave your answer as a fraction**.

SOLUTION:

Required to find: The probability the volume of petrol needed to fill the tank is more than 50.5 litres

Volume (litres)	Class Boundaries	Cumulative Frequency	
:	:	:	
41 - 50	$40.5 \le V < 50.5$	129	
51 – 60	$50.5 \le V < 60.5$	150	

So, the number of vehicles that required more than 50.5 litres is 150-129=21.

P(vehicle chosen at random requires more than 50.5 litres of petrol to be filled) No. of vehicles requiring more than 50.5 litres

$$=\frac{21}{150}$$

$$=\frac{7}{50}$$

(d) Byron estimates the median amount of petrol to be 43.5 litres. Explain why Byron's estimate is INCORRECT.

SOLUTION:

Data: Byron estimates the median amount of petrol to be 43.5 litres.

Required to explain: Why Byron's estimate is INCORRECT.

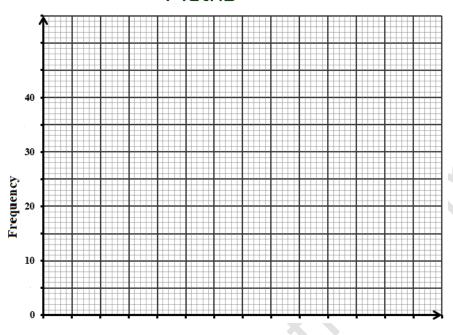
Solution:

$$\frac{1}{2} (Cumulative frequency) = \frac{1}{2} (150)$$
= 75

So the 75th value corresponds to the median. The 75th value lies in the class 31 – 40 or more precisely $30.5 \le V < 40.5$. The median would be $\frac{31+40}{2}$ or

 $\frac{30.5+40.5}{2}$ which is the mid-class interval of the class = 35.51. So Byron's estimate of 43.5 is incorrect.

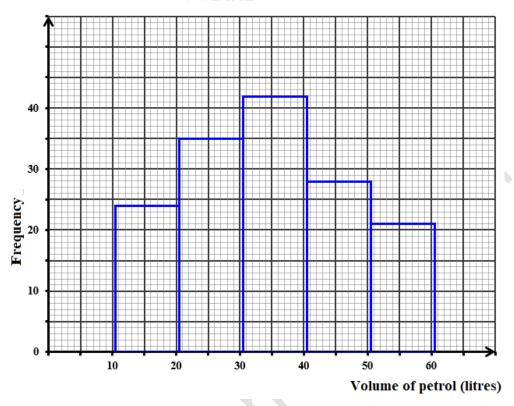
(e) On the partially labelled grid below, construct a histogram to represent the distribution of the volume of petrol needed to fill the tanks of the 150 vehicles.



SOLUTION:

Required to construct: A histogram to represent the distribution of the volume of petrol needed to fill the tanks of the 150 vehicles **Solution:**

Volume in litres L.C.L. U.C.L.	Class Boundaries L.C.B. U.C.B.	Frequency	Cumulative Frequency
11 – 20	$10.5 \le V < 20.5$	24	24
21 - 30	$20.5 \le V < 30.5$	59 - 24 = 35	59
31 - 40	$30.5 \le V < 40.5$	101 - 59 = 42	101
41 – 50	$40.5 \le V < 50.5$	129 - 101 = 28	129
51 – 60	$50.5 \le V < 60.5$	150 - 129 = 21	150



- **6.** (a) The scale on a map is 1:25000.
 - (i) Determine the actual distance, in km, represented by 0.5 cm on the map.

SOLUTION:

Data: The scale of a map is 1:25000.

Required to determine: The actual distance, in km, represented by 0.5

cm on the map **Solution:**

Scale is 1:25000

$$1 \text{ cm} = 25000 \text{ cm}$$

$$0.5 \text{ cm} = 0.5 \times 25000 \text{ cm}$$

$$= 12500 \text{ cm}$$

$$1 \text{ km} = 100000 \text{ cm}$$

$$100000 \text{ cm} = 1 \text{ km}$$

$$1 \text{ cm} = \frac{1}{100000} \text{ km}$$
And $12500 \text{ cm} = \frac{1}{100000} \times 12500 \text{ km}$

$$= 0.125 \text{ km or } \frac{1}{8} \text{ km}$$

Calculate the actual area, in km², represented by 2.25 cm² on the map. (ii)

SOLUTION:

Required to calculate: the actual area, in km², represented by 2.25 cm² on the map

Calculation:

$$1 \text{ cm} = \frac{25000}{100000} \text{ km}$$

$$= \frac{1}{4} \text{ km}$$
So
$$1 \text{ cm}^2 = \left(\frac{1}{4} \times \frac{1}{4}\right) \text{ km}^2$$
And
$$2.25 \text{ cm}^2 = \left(\frac{1}{4} \times \frac{1}{4}\right) \times 2.25 \text{ km}^2$$

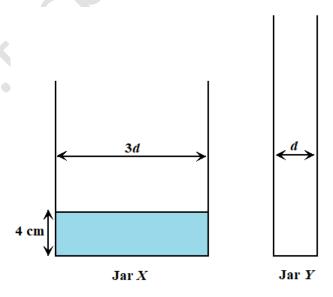
$$= \frac{1}{16} \times \frac{9}{4} \text{ km}^2$$

$$= \frac{9}{64} \text{ km}^2$$

$$= 0.140625 \text{ km}^2$$

The diagram below (not drawn to scale) shows the cross-section of two **(b)** cylindrical jars, Jar X and Jar Y. The diameters of Jar X and Jar Y are 3d cm and d cm respectively.

Initially, Jar Y is empty and Jar X contains water to a height (depth) of 4 cm.



(i) Determine, in terms of π and d, the volume of water in Jar X.

SOLUTION:

Data: Diagram showing two jars X and Y with diameters 3d cm and d cm respectively. Jar Y is empty and Jar X contains water to a height (depth) of 4 cm.

Required to determine: The volume of Jar X, in terms of π and d **Solution:**

Volume of water in $X = \pi r^2 h$, where r = radius and h = height

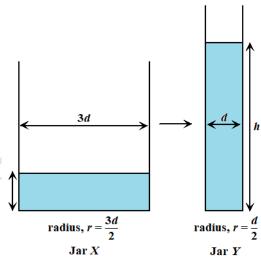
$$= \pi \left(\frac{3d}{2}\right)^2 \times 4$$
$$= 9\pi d^2 \text{ cm}^3$$

(ii) If all the water from Jar X is now poured into Jar Y, calculate the height it will reach.

SOLUTION:

Required to find: The height of water in Jar *Y* if the contents of Jar *X* is poured into it

Solution:



Water from X is poured into Y. Let the height reached be h cm.

Volume of water in
$$Y = \pi \left(\frac{d}{2}\right)^2 h$$
$$= \frac{\pi d^2 h}{4}$$

Hence,
$$9\pi d^2 = \frac{\pi d^2 h}{4}$$

$$9 = \frac{h}{4} \quad [\div \pi d^2]$$

$$h = 36 \text{ cm}$$

So the height of the water in Jar *Y* is 36 cm.

- 7. (a) The *n*th term, T_n , of a sequence is given by $T_n = 3n^2 2$.
 - (i) Show that the first term of the sequence is 1.

SOLUTION:

Data: $T_n = 3n^2 - 2$, where T_n is the *n*th term in a sequence.

Required to show: The first term of the sequence is 1

Solution:

$$T_n = 3n^2 - 2$$

When n = 1

$$T_1 = 1^{st}$$
 term

$$=3(1)^2-2$$

$$=3(1)-2$$

$$=3-2$$

=1

Q.E.D.

(ii) What is the third term of the sequence?

SOLUTION:

Required to find: The third term in the sequence

Solution:

When
$$n = 3$$

$$T_3 = 3(3)^2 - 2$$

$$=3(9)-2$$

$$=27-2$$

$$=25$$

(iii) Given that $T_n = 145$, what is the value of n?

SOLUTION:

Data: $T_n = 145$

Required to find: *n*

$$T_n = 145$$

So
$$3n^2 - 2 = 145$$

$$3n^{2} = 145 + 2$$

$$3n^{2} = 147$$

$$n^{2} = \frac{147}{3}$$

$$n^{2} = 49$$

$$n = \sqrt{49}$$

$$= \pm 7$$

n is a positive integer so n = 7

(b) The first 8 terms of another sequence with n^{th} term, U(n) are 1, 1, 2, 3, 5, 8, 13, 21, where U(1)=1, U(2)=1 and U(n)=U(n-1)+U(n-2) for $n \ge 3$.

For example, the fifth and seventh terms are

$$U(5) = U(4) + U(3) = 3 + 2 = 5$$

$$U(7) = U(6) + U(5) = 8 + 5 = 13$$

(i) Write down the next two terms in the sequence, that is, U(9) and U(10).

SOLUTION:

Data: The first 8 terms of another sequence with n^{th} term, U(n) are 1, 1,

2, 3, 5, 8, 13, 21, where
$$U(1)=1$$
, $U(2)=1$ and

$$U(n) = U(n-1) + U(n-2)$$
 for $n \ge 3$.

Required to find: U(9) and U(10)

Solution:

The first 8 terms of the sequence 1,1, 2, 3, 5, 8, 13, 21

$$U(1)=1$$

$$U(2)=1$$

$$U(3)=2$$

$$U(n)=U(n-1)+U(n-2)$$

$$U(9) = U(9-1) + U(9-2)$$

 $= U(8) + U(7)$
 $= 21+13$
 $= 34$
 $U(10) = U(10-1) + U(10-2)$
 $= U(9) + U(8)$
 $= 34+21$
 $= 55$

(ii) Which term in the sequence is the sum of U(18) and U(19).

SOLUTION:

Required to find: The term in the sequence that is the sum of U(18) and U(19).

Solution:

$$U(n) = U(n-1) + U(n-2)$$

 $U(n) = U(19) + u(18)$
 $n-1 = 19$ and $n-2 = 18$
 $n = 19 + 1 = 20$ OR $n = 18 + 2 = 20$

Hence,
$$U(18)+U(19)=U(20)$$

Therefore, the 20th term of the sequence is the sum of U(18) and U(19).

(iii) Show that U(20)-U(19)=U(19)-U(17).

SOLUTION:

Required to show: U(20)-U(19)=U(19)-U(17)

Proof:

$$U(n) = U(n-1) + U(n-2)$$

LHS RHS
$$U(20) - U(19) \qquad U(19) - U(17)$$

$$= [U(19) + U(18)] - U(19) \qquad = [U(18) + U(17)] - U(17)$$

$$= U(18) \qquad = U(18)$$

$$LHS = RHS = U(18)$$

 $U(20)-U(19)=U(19)-U(17)$
Q.E.D

OR

$$U(20) - U(19) = {U(19) + U(18)} - {U(18) + U(17)} = U(19) - U(17)$$
 Q.E.D

OR

$$U(1)=1$$

$$U(2)=1$$

$$U(3)=2$$

$$U(4)=3$$

$$U(5) = 5$$

$$U(6) = 8$$

$$U(7) = 13$$

$$U(8) = 21$$

$$U(9) = 34$$

$$U(10) = 55$$

$$U(11) = 55 + 34 = 89$$

$$U(12) = 89 + 55 = 144$$

$$U(13) = 144 + 89 = 233$$

$$U(14) = 233 + 144 = 377$$

$$U(15) = 377 + 233 = 610$$

$$U(16) = 610 + 377 = 987$$

$$U(17) = 987 + 610 = 1597$$

$$U(18) = 1597 + 987 = 2584$$

$$U(19) = 2584 + 1597 = 4181$$

$$U(20) = 4181 + 2584 = 6765$$

$$U(20) - U(19) = 6765 - 4181$$
$$= 2584$$

$$U(19) - U(17) = 4181 - 1597$$

= 2584

So
$$U(19)-U(17)=U(20)-U(19)$$

Q.E.D.

SECTION II

Answer ALL questions.

All working must be clearly shown.

ALGEBRA, RELATIONS, FUNCTIONS AND GRAPHS

- 8. (a) The functions f and g are defined by $f(x) = \frac{9}{2x+1}$ and g(x) = x-3.
 - (i) State a value of x that CANNOT be in the domain of f.

SOLUTION:

Data:
$$f(x) = \frac{9}{2x+1}$$
 and $g(x) = x-3$

Required to state: A value of x that cannot be in the domain of f **Solution:**

As
$$2x+1 \rightarrow 0$$

 $2x \rightarrow -1$
 $x \rightarrow -\frac{1}{2}$
 $f(x) \rightarrow \frac{9}{0} = \infty \text{ (undefined)}$

So $x = -\frac{1}{2}$ cannot be in the domain of f(x). We say that f(x) is undefined or not defined or discontinuous or not continuous for $x = -\frac{1}{2}$.

(ii) Find, in its simplest form, expressions for:

a)
$$fg(x)$$

SOLUTION:

Required to find: fg(x)

$$f(x) = \frac{9}{2x+1} \qquad \text{and} \quad g(x) = x - 3$$

$$fg(x) = f[g(x)] = f(x-3)$$

$$=\frac{9}{2[g(x)]+1}$$

FAS-PASS
Maths
$$= \frac{9}{2(x-3)+1}$$

$$= \frac{9}{2x-6+1}$$

$$= \frac{9}{2x-5}, x \neq 2\frac{1}{2}$$

b)
$$f^{-1}(x)$$

SOLUTION:

Required to find: $f^{-1}(x)$

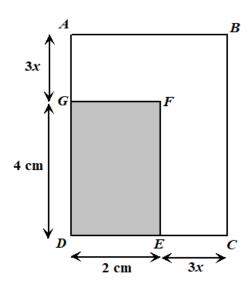
Solution:

Let
$$y = f(x)$$
$$y = \frac{9}{2x+1}$$
$$y(2x+1) = 9$$
$$2xy + y = 9$$
$$2xy = 9 - y$$
$$x = \frac{9 - y}{2y}$$

Replace y by x to get:

$$f^{-1}(x) = \frac{9-x}{2x}, x \neq 0$$

(b) The diagram below shows two rectangles, ABCD and GFED. ABCD has an area of 44 cm². GFED has sides 4 cm and 2 cm. AG = EC = 3x cm.

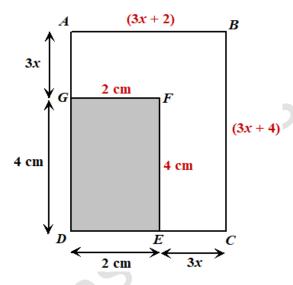


(i) By writing an expression for the area of rectangle *ABCD*, show that $x^2 + 2x - 4 = 0$.

SOLUTION:

Data: Diagram showing two rectangles ABCD and GFED, such that ABCD has an area of 44 cm², GFED has sides 4 cm and 2 cm and AG = EC = 3x cm.

Required To Show: $x^2 + 2x - 4 = 0$ **Proof:**



Length of DC = (2+3x)

Length of AD = (4+3x)

Area of
$$ABCD = (2+3x)(4+3x)$$

= $8+12x+6x+9x^2$
= $8+18x+9x^2$

Hence,
$$9x^2 + 18x + 8 = 44$$

 $9x^2 + 18x - 36 = 0$
 $(\div 9)$
 $x^2 + 2x - 4 = 0$
Q.E.D

(ii) Calculate, to 3 decimal places, the value of x.

SOLUTION:

Required to calculate: *x*, correct to 3 decimal places. Calculation:

Recall if
$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

When
$$x^2 + 2x - 4 = 0$$

$$x = \frac{-(2) \pm \sqrt{(2)^2 - 4(1)(-4)}}{2(1)}$$

$$= \frac{-2 \pm \sqrt{4 + 16}}{2}$$

$$= \frac{-2 \pm \sqrt{20}}{2}$$

$$= \frac{-2 \pm 4.4721}{2}$$

$$x = \frac{2.4721}{2}$$
or
$$= 1.23605$$
or
$$= 1.236$$
or
$$= -3.23605$$

$$= -3.236 \text{ (correct to 3 decimal places)}$$

Calculate the perimeter of the UNSHADED region. (iii)

SOLUTION:

Required to calculate: The perimeter of the unshaded region

Calculation:

Perimeter of the unshaded region

$$=(3x)+(3x+2)+(3x+4)+(3x)+(4)+(2)$$

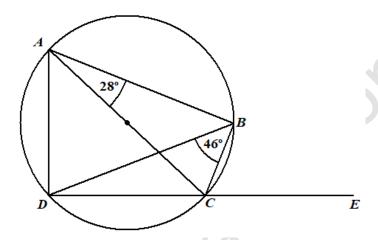
$$=12x+12$$

=
$$12(1.23605)+12$$
 (since x is positive)
= 26.8326 cm

$$= 26.8326$$
 cm

GEOMETRY AND TRIGONOMETRY

9. (a) The diagram below shows a circle where AC is a diameter. B and D are two other points on the circle and DCE is a straight line. Angle $CAB = 28^{\circ}$ and $\angle DBC = 46^{\circ}$.



Calculate the value of each of the following angles. Show detailed working where necessary and given a reason to support your answers.

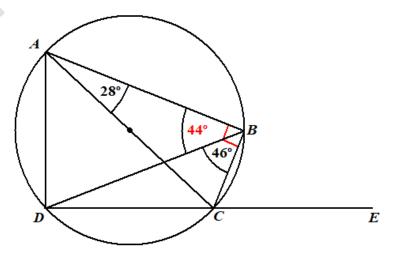
(i) ∠*DBA*

SOLUTION:

Data: Diagram showing a circle where AC is a diameter. B and D are two other points on the circle and DCE is a straight line. Angle $CAB = 28^{\circ}$ and $\angle DBC = 46^{\circ}$.

Required to calculate: $\angle DBA$

Calculation:



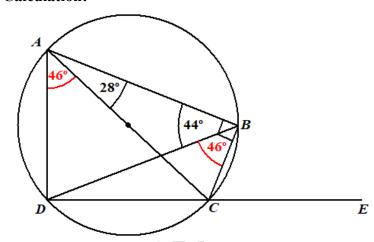
 $A\hat{B}C = 90^{\circ}$ (Angle in a semi-circle is a right angle.) $A\hat{B}D = 90^{\circ} - 46^{\circ}$ $= 44^{\circ}$

(ii) ∠*DAC*

SOLUTION:

Required to calculate: $\angle DAC$

Calculation:



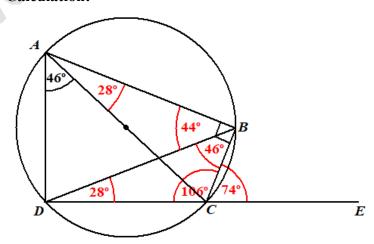
 $D\hat{A}C = 46^{\circ}$ (The angles subtended by a chord (DC) at the circumference of a circle ($D\hat{B}C$ and $D\hat{A}C$) and standing on the same arc are equal.)

(iii) ∠BCE

SOLUTION:

Required To Calculate: $\angle BCE$

Calculation:



 $B\widehat{D}C = 28^{\circ}$ (Angles subtended by a chord (BC) at the circumference of a circle ($B\widehat{A}C$ and $B\widehat{D}C$) and standing on the same arc are equal.)

Quadrilateral ABCD is cyclic and opposite angles of a cyclic quadrilateral are supplementary

$$B\hat{C}D = 180^{\circ} - (46^{\circ} + 28^{\circ})$$

= $180^{\circ} - 74^{0} = 106^{0}$

$$B\hat{C}E = 180^{\circ} - 106^{\circ}$$

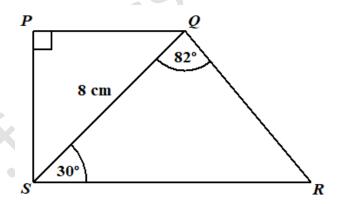
= 74° (Angles in a straight line add to 180°.)

Alternative Method:

$$B\hat{C}E = 28^{\circ} + 46^{\circ}$$

= 74° (Exterior angle of a triangle is equal to the sum of the interior opposite angles.)

(b) The diagram below shows a quadrilateral PQRS where PQ and SR are parallel. SQ = 8 cm, $\angle SPQ = 90^{\circ}$, $\angle SQR = 82^{\circ}$ and $\angle QSR = 30^{\circ}$.



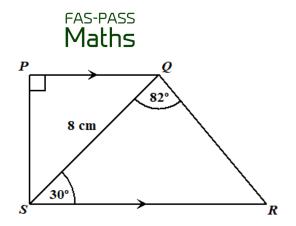
Determine

(i) the length PS

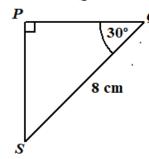
SOLUTION:

Data: Diagram showing a quadrilateral PQRS where PQ and SR are parallel. SQ = 8 cm, $\angle SPQ = 90^{\circ}$, $\angle SQR = 82^{\circ}$ and $\angle QSR = 30^{\circ}$.

Required to determine: the length of *PS*



Consider $\triangle PQS$:



$$\sin 30^{\circ} = \frac{PS}{8}$$

$$\therefore PS = 8 \times \sin 30^{\circ}$$

$$= 4 \text{ cm}$$

(ii) the length PQ

SOLUTION:

Required to determine: PQ

Solution:

$$\frac{PQ}{8} = \cos 30^{\circ}$$

 $PQ = 8\cos 30^{\circ}$

$$=8\times\frac{\sqrt{3}}{2}$$

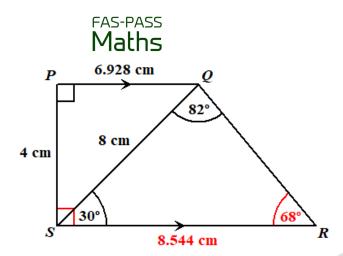
 $=4\sqrt{3}$ cm (in exact form)

 ≈ 6.93 cm (correct to 2 decimal places)

(iii) the area of *PQRS*

SOLUTION:

Required to determine: The area of *PQRS*



$$S\hat{R}Q = 180^{\circ} - (30^{\circ} + 82^{\circ})$$

= 68°

$$\hat{PSR} = 90^{\circ}$$
 (Co-interior angles)

$$\frac{SR}{\sin 82^{\circ}} = \frac{8}{\sin 68^{\circ}}$$
 (Sine rule)
$$SR = \frac{8 \times \sin 82^{\circ}}{\sin 68^{\circ}}$$

= 8.544 cm

Area of
$$PQRS = \frac{1}{2} (6.928 + 8.544) \times 4$$

= 30.944 cm²
 $\approx 30.94 \text{ cm}^2$ (correct to 2 decimal places)

10. (a) (i) a) Find the matrix product
$$\begin{pmatrix} -1 & 3 \\ 4 & h \end{pmatrix} \begin{pmatrix} k \\ 5 \end{pmatrix}$$
.

SOLUTION:

Required to find:
$$\begin{pmatrix} -1 & 3 \\ 4 & h \end{pmatrix} \begin{pmatrix} k \\ 5 \end{pmatrix}$$

Solution:

$$\begin{pmatrix} -1 & 3 \\ 4 & h \end{pmatrix} \begin{pmatrix} k \\ 5 \end{pmatrix} = \begin{pmatrix} e_{11} \\ e_{21} \end{pmatrix}$$

$$2 \times 2 \quad 2 \times 1 \quad 2 \times 1$$

$$e_{11} = (-1 \times k) + (3 \times 5) = -k + 15$$

 $e_{21} = (4 \times k) + (h \times 5) = 4k + 5h$

So,
$$\begin{pmatrix} -1 & 3 \\ 4 & h \end{pmatrix} \begin{pmatrix} k \\ 5 \end{pmatrix} = \begin{pmatrix} -k+15 \\ 4k+5h \end{pmatrix}$$

Hence, find the values of h and k that satisfy the matrix equation $\begin{pmatrix} -1 & 3 \\ 4 & h \end{pmatrix} \begin{pmatrix} k \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$

SOLUTION:

Data:
$$\begin{pmatrix} -1 & 3 \\ 4 & h \end{pmatrix} \begin{pmatrix} k \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Required to find: h and k

Solution:

$$\begin{pmatrix} -1 & 3 \\ 4 & h \end{pmatrix} \begin{pmatrix} k \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Hence,
$$\binom{-k+15}{4k+5h} = \binom{0}{0}$$

Equating corresponding entries:

$$4k + 5h = 0$$

$$-k+15=0$$
 $4(15)+5h=0$ $k=15$ $5h=-60$

$$h = -12$$

So k = 15 and h = -12.

(ii) Using a matrix method, solve the simultaneous equations

$$2x + 3y = 5$$
$$-5x + y = 13$$

SOLUTION:

Required to solve: 2x + 3y = 5 and -5x + y = 13 using matrix method **Solution:**

$$2x + 3y = 5$$

$$-5x + y = 13$$

Expressing the given equations in a matrix form:

$$\begin{pmatrix} 2 & 3 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 13 \end{pmatrix}$$

...matrix equation

Let
$$A = \begin{pmatrix} 2 & 3 \\ -5 & 1 \end{pmatrix}$$

Finding A^{-1} :

First fid the determinant, |A|

$$|A| = (2 \times 1) - (3 \times -5)$$

= 2+15
= 17

$$A^{-1} = \frac{1}{17} \begin{pmatrix} 1 & -(3) \\ -(-5) & 2 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{17} & -\frac{3}{17} \\ \frac{5}{17} & \frac{2}{17} \end{pmatrix}$$

Multiply the matrix equation by A^{-1} :

$$A \times A^{-1} \times \begin{pmatrix} x \\ y \end{pmatrix} = A^{-1} \times \begin{pmatrix} 5 \\ 13 \end{pmatrix}$$

$$I \times \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{17} & -\frac{3}{17} \\ \frac{5}{17} & \frac{2}{17} \end{pmatrix} \begin{pmatrix} 5 \\ 13 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} e_{11} \\ e_{21} \end{pmatrix}$$

$$e_{11} = \begin{pmatrix} \frac{1}{17} \times 5 \end{pmatrix} + \begin{pmatrix} \frac{3}{17} \times 13 \end{pmatrix} = -2$$

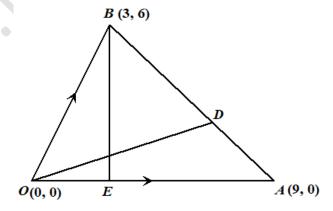
$$e_{21} = \begin{pmatrix} \frac{5}{17} \times 5 \end{pmatrix} + \begin{pmatrix} \frac{2}{17} \times 13 \end{pmatrix} = 3$$

So
$$\binom{x}{y} = \binom{-2}{3}$$

Equating corresponding entries:

$$x = -2, y = 3$$

(b) Relative to the origin O(0, 0), the position vectors of the points A and B are $\overrightarrow{OA} = \begin{pmatrix} 9 \\ 0 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$ respectively. The points D and E are on AB and OA respectively and are such that $AD = \frac{1}{3}AB$ and $OE = \frac{1}{3}OA$. The following diagram illustrates this information.



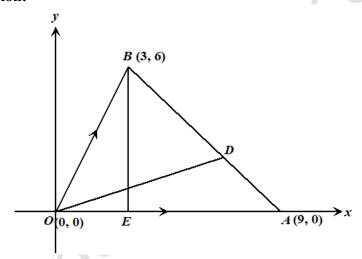
Express the following vectors in the form $\begin{pmatrix} a \\ b \end{pmatrix}$:

(i) \overrightarrow{AB}

SOLUTION:

Data: Diagram showing the points D and E are on AB and OA respectively and are such that $AD = \frac{1}{3}AB$ and $OE = \frac{1}{3}OA$. The position vectors of the points A and B are $\overrightarrow{OA} = \begin{pmatrix} 9 \\ 0 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$.

Required to find: \overrightarrow{AB} in the form $\begin{pmatrix} a \\ b \end{pmatrix}$



$$A = (9, 0)$$

$$\therefore \overrightarrow{OA} = \begin{pmatrix} 9 \\ 0 \end{pmatrix}$$

$$B = (3, 6)$$

$$\therefore \overrightarrow{OB} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$$

$$= -\binom{9}{0} + \binom{3}{6}$$

$$= \binom{-6}{6} \text{ is of the form } \binom{a}{b}, \text{ where } a = -6 \text{ and } b = 6$$

(ii)
$$\overrightarrow{OD}$$

SOLUTION:

Required to find: \overrightarrow{OD}

Solution:

$$\overrightarrow{AD} = \frac{1}{3} \overrightarrow{AB}$$

$$= \frac{1}{3} \begin{pmatrix} -6 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 2 \end{pmatrix}$$

$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD}$$

$$= \binom{9}{0} + \binom{-2}{2}$$

$$= \binom{7}{2} \text{ is of the form } \binom{a}{b}, \text{ where } a = 7 \text{ and } b = 2.$$

(iii) \overrightarrow{BE}

SOLUTION:

Required to find: \overrightarrow{BE} **Solution:**

$$\overrightarrow{OE} = \frac{1}{3} \overrightarrow{OA}$$
$$= \frac{1}{3} \binom{9}{0}$$
$$= \binom{3}{0}$$

$$\overrightarrow{BE} = \overrightarrow{BO} + \overrightarrow{OE}$$

$$= -\binom{3}{6} + \binom{3}{0}$$

$$= \binom{0}{-6} \text{ is of the form } \binom{a}{b}, \text{ where } a = 0 \text{ and } b = -6.$$