JUNE 2017 CSEC MATHEMATICS PAPER 2

SECTION 1

1. (a) Using a calculator, or otherwise, calculate the EXACT value of
(i) $\left(4 \frac{1}{3}-1 \frac{2}{5}\right) \div \frac{4}{15}$

SOLUTION:

Required to calculate: $\left(4 \frac{1}{3}-1 \frac{2}{5}\right) \div \frac{4}{15}$ in exact form

Calculation:

$$
\begin{aligned}
4 \frac{1}{3}-1 \frac{2}{5} & =\frac{13}{3}-\frac{7}{5} \\
& =\frac{5(13)-3(7)}{15} \\
& =\frac{65-21}{15} \\
& =\frac{44}{15}
\end{aligned}
$$

So, now we have

$$
\begin{aligned}
\left(4 \frac{1}{3}-1 \frac{2}{5}\right) \div \frac{4}{15} & =\frac{44}{15} \div \frac{4}{15} \\
& =\frac{1144}{15} \times \frac{15}{4_{1}} \\
& =11 \text { (in exact form) }
\end{aligned}
$$

(ii)

$$
\frac{(3.1-1.15)^{2}}{0.005}
$$

SOLUTION:

Required to calculate: $\frac{(3.1-1.15)^{2}}{0.005}$ in exact form
Calculation:

$$
\begin{aligned}
\frac{(3.1-1.15)^{2}}{0.005} & =\frac{(1.95)^{2}}{0.005} \quad(\text { By calculator }) \\
& =\frac{3.8025}{0.005} \\
& =760.5(\text { in exact form })
\end{aligned}
$$

(b) A store is promoting a new mobile phone under two plans. Plan A and Plan B. The plans are advertised as shown in the table below.

	Plan A	Plan B
Deposit	$\$ 400$	$\$ 600$
Monthly installment	$\$ 65$	$\$ 80$
Number of months to repay	12	6
Tax on ALL payments	0%	5%

(i) Calculate the TOTAL cost of a phone under Plan A.

SOLUTION:

Data: Table showing two mobile phone plans as advertised by a store.
Required to calculate: The total cost of a phone under Plan A

Calculation:

Total cost under Plan A
$=$ The deposit $+($ Monthly installments \times No. of months to repay $)+$ Tax
$=\$ 400+(\$ 65 \times 12)+\$ 0$
$=\$(400+780)$
$=\$ 1180$
(ii) Determine which of the two plans, A or B, is the better deal. Justify your answer.

SOLUTION:

Required to find: The better deal of the two plans

Solution:

Total cost under Plan B
$=$ The deposit $+($ Monthly installments \times No. of months to repay $)+$ Tax
$=\$ 600+(\$ 80 \times 6)+\frac{5}{100}(\$ 600+(\$ 80 \times 6))$
$=\$(600+480)+\frac{5}{100}(\$ 600+\$ 480)$
$=1.05 \times \$(600+480)$
$=\$ 1134$

If the better deal is supposed to mean the plan that has a lesser cost, then Plan B is the better deal as there is a savings of $\$ 1180-\$ 1134=\$ 46$.
(c) John's monthly electricity bill is based on the number of kWh of electricity that he consumes for that month. He is charged $\$ 5.10$ per kWh of electricity consumed. For the month of March 2016, two meter readings are displayed in the table below.

	Meter Readings (kWh)				
Beginning 01 March	0	3	0	1	1
Ending 31 March	0	3	3	0	7

(i) Calculate the TOTAL amount that John pays for electricity consumption for the month of March 2016.

SOLUTION:

Data: Table showing John's electricity meter readings, in kWh , at the beginning and end of March 2016. John is charged $\$ 5.10$ per kWh for electricity used.

Required to calculate: The total amount John pays for electricity for March 2016

Calculation:

Number of kWh used
= End reading on 31 March - Beginning reading on 01 March

$$
\begin{aligned}
& =03307- \\
& \frac{03011}{296}
\end{aligned}
$$

The cost at $\$ 5.10$ per $\mathrm{kWh}=296 \times \$ 5.10=\$ 1509.60$
\therefore If John pays the full amount that is required, then he would pay \$1509.60.
(ii) For the next month, April 2016, John pays $\$ 2351.10$ for electricity consumption. Determine his meter reading at the end of April 2016.

SOLUTION:

Data: John pays \$2351.10 for electricity in April 2016.
Required to calculate: John's meter reading at the end of April 2016 Calculation:
For the month of April John pays \$2 351.10.
At $\$ 5.10$ per kWh , the number of kWh used in April $=\frac{\$ 2351.10}{\$ 5.10}$

$$
=461 \mathrm{kWh}
$$

Hence, the meter reading at the end of April should be the reading at the end of March +461

$$
\begin{array}{r}
=03307+ \\
\begin{array}{r}
461 \\
03768 \\
\hline
\end{array}+.
\end{array}
$$

2. (a) Factorise the following expressions completely.
(i) $6 y^{2}-18 x y$

SOLUTION:

Required to factorise: $6 y^{2}-18 x y$
Solution:

$$
\begin{aligned}
6 y^{2}-18 x y & =6 y \times y-6 y \times 3 x \\
& =6 y(y-3 x)
\end{aligned}
$$

(ii) $4 m^{2}-1$

SOLUTION:

Required to factorise: $4 m^{2}-1$
Solution:
$4 m^{2}-1=(2 m)^{2}-(1)^{2}$
This is now in the form of the difference of two squares.
So, $4 m^{2}-1=(2 m-1)(2 m+1)$
(iii) $2 t^{2}-3 t-2$

SOLUTION:

Required to factorise: $2 t^{2}-3 t-2$

Solution:

$$
\begin{aligned}
2 t^{2}-3 t-2= & (2 t+1)(t-2) \\
& {\left[\begin{array}{l}
2 t^{2}-4 t+t-2 \\
2 t^{2}-3 t-2
\end{array}\right] \text { We may even expand to confirm our result } }
\end{aligned}
$$

(b) Write as a single fraction and simplify

$$
\frac{5 p+2}{3}-\frac{3 p-1}{4}
$$

SOLUTION:

Required to write: $\frac{5 p+2}{3}-\frac{3 p-1}{4}$ as a simplified single fraction.
Solution:

$$
\begin{aligned}
& \frac{5 p+2}{3}-\frac{3 p-1}{4} \\
& \frac{4(5 p+2)-3(3 p-1)}{12}=\frac{20 p+8-9 p+3}{12} \\
&=\frac{20 p-9 p+8+3}{12} \\
&=\frac{11 p+11}{12} \\
&=\frac{11(p+1)}{12}
\end{aligned}
$$

(c) A formula is given as $d=\sqrt{\frac{4 h}{5}}$.
(i) Determine the value of d when $h=29$. Give your answer correct to 3 significant figures.

SOLUTION:

Data: $d=\sqrt{\frac{4 h}{5}}$ and $h=29$

Required to calculate: d

Calculation:

When $h=29$
$d=\sqrt{\frac{4(29)}{5}}$
$=\sqrt{\frac{116}{5}}$
$=\sqrt{23.2}$
(using the calculator)
$=4.81 \underline{\underline{\underline{6}}}$
$=4.82$ (correct to 3 significant figures)
(ii) Make h the subject of the formula.

SOLUTION:

Required to make: h the subject of the formula Solution:

$$
d=\sqrt{\frac{4 h}{5}}
$$

Squaring both sides to remove the hindrance of the root sign

$$
\begin{aligned}
d^{2} & =\frac{4 h}{5} \\
\therefore 5 \times d^{2} & =4 h \\
4 h & =5 d^{2} \\
h & =\frac{5 d^{2}}{4}
\end{aligned}
$$

3. (a) The Universal set, U, is defined as follows:

$$
U=\{x: x \in N, 2<x<12\}
$$

The sets M and R are subsets of U such that
$M=\{$ odd numbers $\}$
$R=\{$ square numbers $\}$
(i) List the members of the subset M.

SOLUTION:

Data: $U=\{x: x \in N, 2<x<12\}$ and M and R are subsets of U where
$M=\{$ odd numbers $\}$ and $R=\{$ square numbers $\}$.
Required to list: The members of the subset M. Solution:

$$
\begin{aligned}
U & =\{3,4,5,6,7,8,9,10,11\} \\
\therefore M & =\{3,5,7,9,11\}
\end{aligned}
$$

(ii) List the members of the subset R.

SOLUTION:

Required to list: The members of the subset R Solution:

$$
R=\{4,9\}
$$

(iii) Draw a Venn diagram that represents the relationship among the defined subsets of U.

SOLUTION:

Required to draw: A Venn diagram to illustrate the information given about the sets U, M and R
Solution:
\boldsymbol{U}

(b) Using a ruler, a pencil and a pair of compasses,
(i) construct accurately, the square $A B C D$, with sides 6 cm .

SOLUTION:
Required to construct: A square $A B C D$ with sides 6 cm .

Solution:

(ii) construct, as an extension of your diagram in (b) (i), the trapezium $D A B Q$ so that $\angle A B Q=120^{\circ}$.
[Note: Credit will be given for clearly drawn construction lines.]
SOLUTION:
Required To Construct: An extension of the diagram previously down trapezium $D A B Q$ with the $\angle A B Q=120^{\circ}$.

Solution:

(iii) Hence, measure and state the length of $B Q$.

SOLUTION:

Required to state: The length of $B Q$, by measurement Solution:
$B Q=6.9 \mathrm{~cm}$ (by measurement with a ruler)
4. (a) The function f is defined as $f(x)=\frac{1}{3} x-2$.
(i) Find the value of $f(3)+f(-3)$.

SOLUTION:

Data: $f(x)=\frac{1}{3} x-2$
Required to find: $f(3)+f(-3)$
Solution:

$$
\begin{array}{rlrl}
f(3) & =\frac{1}{3}(3)-2 & f(-3) & =\frac{1}{3}(-3)-2 \\
& =1-2 & & =-1-2 \\
& =-1 & & =-3
\end{array}
$$

So,

$$
\begin{aligned}
f(3)+f(-3) & =-1+(-3) \\
& =-1-3 \\
& =-4
\end{aligned}
$$

(ii) Calculate the value of x for which $f(x)=5$.

SOLUTION:

Required to calculate: x when $f(x)=5$

Calculation:

$$
\begin{gathered}
f(x)=5 \\
\therefore \frac{1}{3} x-2=5 \\
\frac{1}{3} x=5+2=7 \\
x=7 \times 3 \\
x=21
\end{gathered}
$$

(iii) Determine the inverse function, $f^{-1}(x)$

SOLUTION:

Required to find: $f^{-1}(x)$

Solution:

$f(x)=\frac{1}{3} x-2$
Let $y=\frac{1}{3} x-2$
Make x the subject of the formula:

$$
\begin{aligned}
y+2 & =\frac{1}{3} x \\
3(y+2) & =x \\
x & =3(y+2)
\end{aligned}
$$

Replace y by x to obtain:

$$
f^{-1}(x)=3(x+2)
$$

(b) The graph below shows two straight lines, ℓ_{1} and ℓ_{2}. Line ℓ_{1} intercepts the $y-$ axis at $(0,1)$. Line ℓ_{2} intercepts the x and y axes at $(12,0)$ and $(0,6)$ respectively.

(i) Calculate the gradient of the lines ℓ_{1} and ℓ_{2}.

SOLUTION:

Data: Diagram showing two lines ℓ_{1} and ℓ_{2}. The y-intercept of ℓ_{1} is $(0,1)$. The y-intercept of ℓ_{2} is $(0,6)$ and the x-intercept is $(12,0)$.
Required to calculate: The gradient of ℓ_{1} and ℓ_{2} Calculation:
Two points on ℓ_{1} are $(0,1)$ and $(2,5)$ which is the point of intersection of ℓ_{1} and ℓ_{2}. Each was obtained by a read-off.
\therefore Gradient of $\ell_{1}=\frac{5-1}{2-0}$

$$
\begin{aligned}
& =\frac{4}{2} \\
& =2
\end{aligned}
$$

Two points on ℓ_{2} are $(12,0)$ and $(0,6)$.
\therefore Gradient of $\ell_{2}=\frac{6-0}{0-12}$

$$
=-\frac{1}{2}
$$

(ii) Determine the equation of the line ℓ_{1}

SOLUTION:

Required to find: The equation of the line ℓ_{1}
Solution:
The general equation of a straight line is of the form $y=m x+c$, where m is the gradient and c is the intercept on the y-axis. In this case, we have already found $m=2$ and noted that $c=1$.
\therefore The equation of the line ℓ_{1} is $y=2 x+1$.
(iii) What is the relationship between ℓ_{1} and ℓ_{2} ? Give a reason for your answer.

SOLUTION:

Required to find: The relationship between ℓ_{1} and ℓ_{2}.

Solution:

Gradient of $\ell_{1}=2$
Gradient of $\ell_{2}=-\frac{1}{2}$
Gradient of $\ell_{1} \times$ Gradient of $\ell_{2}=2 \times-\frac{1}{2}=-1$
Hence, ℓ_{1} is perpendicular to ℓ_{2} since the product of the gradients of perpendicular lines is -1 .
5. (a) $P T R S$, not drawn to scale, is a quadrilateral. Q is a point on $P T$ such that $Q T=Q R=Q P$. Angle $Q R T=76^{\circ}$.

Determine, given a reason for each step of your answer, the measure of
(i) angle $R Q T$

SOLUTION:

Data: Diagram showing a quadrilateral PTRS such that $Q T=Q R=Q P$ and angle $Q R T=76^{\circ}$.
Required to find:
$R \hat{Q} T$

Solution:

Angle $R T Q=76^{\circ}$
(The base angles of the isosceles triangle $R Q T$ are equal)
\therefore Angle $R Q T=180^{\circ}-\left(76^{\circ}+76^{\circ}\right)$

$$
=28^{\circ} \quad\left(\text { The sum of interior angles in a triangle }=180^{\circ}\right)
$$

(ii) angle $P R T$

SOLUTION:

Required to find: angle $P R T$
Solution:

Angle $Q P R=$ Angle $Q R P$
(The base angles of the isosceles triangle $R Q P$ are equal)
Angle $Q P R$ + Angle $Q R P=28^{\circ}$
(The exterior angle of a triangle is equal to the sum of the interior opposite angles)
\therefore Angle $Q R P=\frac{28^{\circ}}{2}=14^{\circ}$
Hence, angle $P R T=76^{\circ}+14^{\circ}=90^{\circ}$
(iii) angle $S P T$, given that angle $S R T=145^{\circ}$ and angle $P S R=100^{\circ}$.

SOLUTION:

Data: Angle $S R T=145^{\circ}$ and angle $P S R=100^{\circ}$
Required to find: angle $S P T$
Solution:

Angle $S R P=145^{\circ}-90^{\circ}$

$$
=55^{\circ}
$$

Angle $S P R=180^{\circ}-\left(100^{\circ}+55^{\circ}\right)$

$$
=25^{\circ} \quad\left(\text { Sum of the interior angles in a triangle }=180^{\circ}\right)
$$

Hence, angle $S P T=25^{\circ}+14^{\circ}$

$$
=39^{\circ}
$$

(b) The diagram below shows a triangle $A B C$ and its image, $A^{\prime} B^{\prime} C^{\prime}$, under a single transformation.

(i) Describe completely the transformation that maps $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$.

SOLUTION:
Data: Diagram showing triangle $A B C$ and its image $A^{\prime} B^{\prime} C^{\prime}$ after a single transformation.
Required To Describe: The transformation that maps $\triangle A B C$ unto $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Solution:

$A^{\prime} B^{\prime} C^{\prime}$ is congruent to $A B C$ and is re-oriented. Hence, the transformation is a rotation. The perpendicular bisectors of $B B^{\prime}$ and $A A^{\prime}$ meet at O. Hence, O is the center of rotation. $B \hat{O} B^{\prime}=90^{\circ}$ and the 'sweep' from $O B$ to $O B^{\prime}$ is clockwise. The transformation is therefore a 90° clockwise rotation about O.
(ii) The translation vector $T=\binom{4}{-5}$ maps $\Delta A^{\prime} B^{\prime} C^{\prime}$ to $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. On the diagram above, drawn the $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

SOLUTION:

Data: $\Delta A^{\prime} B^{\prime} C^{\prime}$ is mapped to $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ by $T=\binom{4}{-5}$.
Required To Draw: $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$

Solution:

See graph, $A^{\prime}=(1,4), B^{\prime}=(1,1)$ and $C^{\prime}=(3,1)$

$\Delta A^{\prime} B^{\prime} C^{\prime} \xrightarrow{T=\binom{4}{-5}} \Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$
$A^{\prime}(1,4) \xrightarrow{\binom{4}{-5}} A^{\prime \prime}(5,-1)$
$B^{\prime}(1,1) \xrightarrow{\binom{4}{-5}} B^{\prime \prime}(5,-4)$
$C^{\prime}(3,1) \xrightarrow{\binom{4}{-5}} C^{\prime \prime}(7,-4)$
6. (a) In this problem take π to be $\frac{22}{7}$.

The diagram below, not drawn to scale, shows a field in the shape of a sector of a circle with center O and diameter 28 m . Angle $P O Z$ is 90°.

Calculate:
(i) the area of the field

SOLUTION:

Data: Diagram showing a field $P O Z$ in the shape of a sector of a circle with center O and diameter 20 m . Angle $P O Z$ is 90°.
Required to calculate: The area of the field
Calculation:
Radius $=\frac{\text { Diameter }}{2}=\frac{28 \mathrm{~m}}{2}=14 \mathrm{~m}$
Area of the field $=\frac{90^{\circ}}{360^{\circ}} \times \pi(14)^{2}$

$$
\begin{aligned}
& =\frac{1}{4} \times \frac{22}{7} \times 14 \times 14 \\
& =154 \mathrm{~m}^{2}
\end{aligned}
$$

(ii) the perimeter of the field

SOLUTION:

Required to calculate: The perimeter of the field Calculation:
The perimeter of the field $=$ Length of radius $O P+$ Length of $\operatorname{arc} P Z+$ Length of radius $Z O$
$=14+\frac{90^{\circ}}{360^{\circ}}(2 \times \pi \times 14)+14$
$=14+\left(\frac{1}{4} \times 2 \times \frac{22}{7} \times 14\right)+14$
$=50 \mathrm{~m}$
(b) The diagram below, not drawn to scale, shows a triangular prism $A B C D E F$. The cross-section is the right-angled triangle, $A B C$, where $A B=6 \mathrm{~cm}$ and $B C=10 \mathrm{~cm}$.

Calculate
(i) the area of the triangle $A B C$

SOLUTION:
Data: Diagram showing the triangular prism $A B C D E F$ which crosssection is a right-angled triangle. $A B=6 \mathrm{~cm}$ and $B C=10 \mathrm{~cm}$.
Required to calculate: The area of triangle $A B C$
Calculation:

$$
\begin{array}{rlrl}
B C^{2} & =A C^{2}+A B^{2} & \text { (Pythagoras' Theorem) } & \text { Area of } \triangle A B C \\
(10)^{2} & =A C^{2}+(6)^{2} & & \frac{6 \times 8}{2} \mathrm{~cm}^{2} \\
A C^{2} & =100-36 & & \frac{48}{2} \mathrm{~cm}^{2} \\
A C^{2} & =64 & & =24 \mathrm{~cm}^{2} \\
A C & =\sqrt{64} & \\
& =8 \mathrm{~cm} \text { (taking the positive value of the root) } &
\end{array}
$$

(ii) the length of the prism, if the volume is $540 \mathrm{~cm}^{3}$

SOLUTION:

Data: The volume of the prism is $540 \mathrm{~cm}^{3}$.
Required to calculate: The length of the prism.
Calculation:
Volume of prism $=$ Area of cross-section \times Length of prism

$$
\therefore 540=24 \times \text { Length of prism }
$$

Length of prism $=\frac{540}{24}$

$$
=22.5 \mathrm{~cm}
$$

(iii) the surface area of the prism.

SOLUTION:

Required to calculate: The surface area of the prism.
Calculation:
Surface area of the prism =Sum of the area of all five sides
Area of $\triangle A B C=\frac{6 \times 8}{2}=24 \mathrm{~cm}^{2}$
Area of $\triangle D E F=\frac{6 \times 8}{2}=24 \mathrm{~cm}^{2}$
Area of rectangle $A B E D=6 \times 22.5=135 \mathrm{~cm}^{2}$
Area of rectangle $A D F E=8 \times 22.5=180 \mathrm{~cm}^{2}$
Area of rectangle $B E F C=10 \times 22.5=225 \mathrm{~cm}^{2}$
Hence, the surface area of the prism $=24+24+135+180+225$

$$
=588 \mathrm{~cm}^{2}
$$

7. The table below shows the speeds, to the nearest kmh^{-1}, of 90 vehicles that pass a checkpoint.

Speed (in kmh		
-1	Frequency	Cumulative Frequency
$0-19$	5	5
$20-39$	11	16
$40-59$	26	
$60-79$	37	
$80-99$	9	
$100-119$	2	

(a) For the class interval $20-39$, as written in the table above, complete the following sentences.
(i) The upper class limit is \qquad
(ii) The class width is \qquad
(iii) Sixteen vehicles passed a checkpoint at no more than \qquad . kmh^{-1}

SOLUTION:

Data: Cumulative frequency table showing the speeds, in kmh^{-1}, of 90 vehicles passing a certain checkpoint.

Required to complete: The sentences given for the class interval 20 - 39
Solution:
(See the modified table done)
(i) The upper class limit is 39 .
(ii) The class width is $39.5-19.5=20$.
(iii) Sixteen vehicles passed a checkpoint at no more than $39.5 \mathrm{kmh}^{-1}$.
(b) Complete the table shown above by inserting the missing values for the cumulative frequency column.

SOLUTION:

Required to complete: The cumulative frequency give.
Solution:
L.C.L-lower class limit, L.C.B-lower class boundary
U.C.L-upper class limit, U.C.B-upper class boundary

| Speed, \boldsymbol{x},
 (in kmh
 - |
| :---: | :---: | :---: | :---: | :---: |
| L.C.L U.C.L |\quad| L.C.B |
| :---: |

(c) On the grid provided, using a scale of 2 cm to represent $20 \mathrm{kmh}^{-1}$ on the x-axis and 2 cm to represent 10 vehicles on the y-axis, draw the cumulative frequency curve to represent the information in the table.

SOLUTION:

Required to draw: The cumulative frequency curve to illustrate the information given
Solution:

(d) (i) On your graph, draw reference lines to estimate the speed at which no more than 50% of the vehicles drove as they passed the check point.

SOLUTION:

Required to show: The speed at which no more than 50% of the vehicles drove past the checkpoint using reference lines
Solution:

(ii) What is the estimated speed?

SOLUTION:

Required to state: The estimated speed at which no more than 50% of the vehicles passed the checkpoint
Solution:
The estimated speed is $62 \mathrm{kmh}^{-1}$
8. The first four figures in a sequence are shown below. Figure 1 is a single black dot, while each of the others consist of black dots arranged in an equilateral manner.

Figure 1
Figure 2

Figure 3

Figure 4
(a) Draw Figure 5 of the sequence in the space below.

SOLUTION:

Data: Figures showing a sequence of black dots arranged in an equilateral manner.
Required to draw: The fifth figure in the sequence

Solution:

(b) How many dots would be in Figure 6?

SOLUTION:

Required to state: The number of dots in Figure 6
Solution:

Figure	Number of Dots
1	1
2	3
3	6
4	10
5	15

By observation, the number of dots in the figure appear to be, $1 / 2 \times($ the number of the figure $) \times(1$ added to the number of the figure $)$
\therefore Figure 6 should have $\frac{1}{2} 6(6+1)=21$ dots
The table below refers to the figures and the number of dots in each figure. Study the patterns below.

Figure, \boldsymbol{n}	Number of Dots, \boldsymbol{d}, in terms \boldsymbol{n}	Number of Dots Used, \boldsymbol{d}
1	$\frac{1}{2} \times 1 \times(1+1)$	1
2	$\frac{1}{2} \times 2 \times(2+1)$	3
3	$\frac{1}{2} \times 3 \times(3+1)$	6
11		
n		

(c) Complete the row which corresponds to Figure 11 in the table above.

SOLUTION:

Data: Table showing the pattern of the number of dots used in the sequence of figures.
Required to complete: The row in the table that corresponds to Figure 11

Solution:

Figure, \boldsymbol{n}	Number of Dots, \boldsymbol{d}, in terms \boldsymbol{n}	Number of Dots Used, \boldsymbol{d}
1	$\frac{1}{2} \times 1 \times(1+1)$	1
2	$\frac{1}{2} \times 2 \times(2+1)$	3
3	$\frac{1}{2} \times 3 \times(3+1)$	6
11	$\frac{1}{2} \times 11 \times(11+1)$	66
n		

(d) Determine which figure in the sequence has 210 dots.

SOLUTION:

Required to find: The figure that has 210 dots in the sequence Solution:

$$
\begin{aligned}
\frac{1}{2} n(n+1) & =210 \\
n(n+1) & =420 \\
& =20 \times(20+1) \\
\therefore n & =20
\end{aligned}
$$

\therefore Figure 20 has 210 dots.
(e) Write a simplified algebraic expression for the number of dots, d, in the Figure n.

SOLUTION:

Required to state: An algebraic expression for the number of dots, d, in Figure n Solution:
$\frac{1}{2} \times n \times(n+1)=\frac{1}{2} n(n+1)$
The completed table looks like:

Figure, \boldsymbol{n}	Number of Dots, \boldsymbol{d}, in terms \boldsymbol{n}	Number of Dots Used, \boldsymbol{d}
1	$\frac{1}{2} \times 1 \times(1+1)$	1
2	$\frac{1}{2} \times 2 \times(2+1)$	3
3	$\frac{1}{2} \times 3 \times(3+1)$	6
11	$\frac{1}{2} \times 11 \times(11+1)$	66
n	$\frac{1}{2} \times n \times(n+1)$	$\frac{1}{2} n(n+1)$

(f) Show that there is no diagram that has exactly 1000 dots.

SOLUTION:

Required To Show: No diagram in the sequence has 1000 dots.
Solution:
Let $\frac{1}{2} n(n+1)=1000$

$$
n(n+1)=2000
$$

There are no two consecutive integers, n and $n+1$ being consecutive integers, whose product is exactly 2000 . Therefore, no diagram has 1000 dots.

SECTION II

Answer TWO questions in this section.

ALGEBRA AND RELATIONS, FUNCTIONS AND GRAPHS

9. (a) The velocity - time graph below shows the motion of a cyclist over a period of 40 seconds.

(i) Calculate the gradient of
a) $\quad O A$

SOLUTION:

Data: A velocity - time graph showing the motion of a cyclist for a 40 second period.
Required to find: The gradient of $O A$.
Solution:
$O=(0,0)$ and $A=(25,10)$
Gradient of $O A=\frac{10-0}{25-0}=\frac{2}{5}$
b) $A B$

SOLUTION:

Required to find: The gradient of $A B$. Solution:
$A=(25,10)$ and $B=(40,10)$
Gradient of $A B=\frac{10-10}{40-25}=0$ (as expected for a horizontal line)
(ii) Complete the following statements.

The cyclist started from rest, where his velocity was \qquad ms^{-1}, and steadily increased his velocity by \qquad ms^{-1} each second during the first 25 seconds. During the next 15 seconds, his velocity remained constant, that is, his acceleration was \qquad ms^{-2}.

SOLUTION:

Required to complete: The sentences given. Solution:
The cyclist started from rest, where his velocity was $0 \mathrm{~ms}^{-1}$, and steadily increased his velocity by $\frac{\mathbf{2}}{\mathbf{5}} \mathrm{ms}^{-1}$ each second during the first 25 seconds.
During the next 15 seconds, his velocity remained constant, that is, his acceleration was $0 \mathrm{~ms}^{-2}$.
(iii) Determine the average speed of the cyclist over the 40-second period.

SOLUTION:

Required to find: Average speed of the cyclist over the 40 second period. Solution:
Average speed $=\frac{\text { Total distance covered }}{\text { Total time taken }}$

Area under the graph $=$ Distance covered

$$
\begin{aligned}
& =\frac{1}{2}\{(40-25)+(40-0)\} \times 10 \\
& =\frac{1}{2}(15+40) \times 10 \\
& =275 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Average speed } & =\frac{275 \mathrm{~m}}{40 \mathrm{~s}} \\
& =6.875 \mathrm{~ms}^{-1} \text { or } 6 \frac{7}{8} \mathrm{~ms}^{-1}
\end{aligned}
$$

(b) Consider the following pair of simultaneous equations:

$$
\begin{aligned}
& x^{2}+2 x y=5 \\
& x+y=3
\end{aligned}
$$

(i) WITHOUT solving, show that $(1,2)$ is a solution for the pair of simultaneous equations.

SOLUTION:

Data: The pair of simultaneous equations $x^{2}+2 x y=5$ and $x+y=3$.
Required to show: $(1,2)$ is a solution for the pair of simultaneous equations without solving

Solution:

Substitute $x=1$ and $y=2$ into both equations to test for 'truth or falsity'
When $x=1$ and $y=2$

$$
\begin{aligned}
x^{2}+2 x y & =5 \\
(1)^{2}+2(1)(2) & =5 \\
1+4 & =5 \\
5 & =5 \text { (True) }
\end{aligned}
$$

When $x=1$ and $y=2$

$$
\begin{aligned}
& x+y=3 \\
& 1+2=3 \\
& 3=3 \text { (True) } \\
& x=1 \text { and } y=2 \text { satisfy both equations }
\end{aligned}
$$

$\therefore(1,2)$ is a solution for the pair of simultaneous equations.
(ii) Solve the pair of simultaneous equations above to determine the other solution.

SOLUTION:

Required to find: The other solution for the pair of simultaneous equations.

Solution:

$$
\text { Let } \begin{array}{rlr}
x^{2}+2 x y=5 & \ldots \text { (1) } \\
x+y & =3 & \ldots \text { (2) }
\end{array}
$$

From equation 2

$$
y=3-x
$$

Substitute equation 3 into equation (1)

$$
\begin{aligned}
& x^{2}+2 x(3-x)=5 \\
& x^{2}+6 x-2 x^{2}=5 \\
&-x^{2}+6 x-5=0 \\
& x-1 \\
& x^{2}-6 x+5=0 \\
&(x-1)(x-5)=0
\end{aligned}
$$

$$
\begin{array}{rlrl}
x-1 & =0 & x-5 & =0 \\
x & =1 & x & =5
\end{array}
$$

We already know that $x=1$ is part of one set of solution. We consider the other.

$$
\text { When } x=5
$$

$$
\begin{aligned}
y & =3-x \\
& =3-5 \\
& =-2
\end{aligned}
$$

\therefore The other solution is $(5,-2)$.

MEASUREMENT, GEOMETRY AND TRIGONOMETRY

10. (a) P, Q, R and S are four points on the circumference of the circle shown below. Angle $Q R S=58^{\circ}$.

Using the geometrical properties of a circle to give reasons for each step of your answer, determine the measure of
(i) $\quad \angle S P Q$

SOLUTION:
Data: Diagram of a circle where P, Q, R and S lie on its circumference and angle $Q R S=58^{\circ}$.
Required to calculate: $\angle S P Q$
Calculation:

$$
\begin{aligned}
\angle S P Q & =180^{\circ}-58^{\circ} \\
& =122^{\circ}
\end{aligned}
$$

(The opposite angles of a cyclic quadrilateral are supplementary.)
(ii) $\angle O Q S$

SOLUTION:

Required to calculate: $\angle O Q S$

Calculation:

$$
\begin{aligned}
\angle S O Q & =2\left(58^{\circ}\right) \\
& =116^{\circ}
\end{aligned}
$$

(The angle subtended by a chord at the center of a circle is twice the angle that the chord subtends at the circumference, standing on the same arc.)

$\angle O S Q=\angle O Q S$ (The base angles of an isosceles triangle are equal)

$$
\begin{aligned}
& \angle O S Q+\angle O Q S=180^{\circ}-116^{\circ} \\
& =64^{\circ} \\
& \begin{aligned}
\therefore \angle O Q S & =\frac{1}{2}\left(64^{\circ}\right) \\
& =32^{\circ}
\end{aligned}
\end{aligned}
$$

(b) A ship leaves Port A and sails 52 km on a bearing of 044° to Port B. The ship then changes course to sail to Port C, 72 km away, on a bearing of 105°.
(i) On the diagram below, not drawn to scale, label the known distances travelled and the known angles.

SOLUTION:

Data: A ship leaves Port A and sails on a bearing of 044° to Port B, 52 km away. It then sails to Port C on a bearing of $105^{\circ}, 72 \mathrm{~km}$ away.
Required to label: The sides and angles given on the diagram Solution:

(ii) Determine the measure of $\angle A B C$.

SOLUTION:
Required to find: $\angle A B C$
Solution: Let the line NB be extended to S, as shown.

$\angle A B S=44^{\circ} \quad$ (Alternate angles are equal)

$$
\begin{aligned}
\angle C B S & =180^{\circ}-105^{\circ} \\
& =75^{\circ}
\end{aligned}
$$

(two angles which make a straight line are supplementary)

$$
\begin{aligned}
\therefore \angle A B C & =44^{\circ}+75^{\circ} \\
& =119^{\circ}
\end{aligned}
$$

(iii) Calculate, to the nearest km , the distance $A C$.

SOLUTION:

Required to calculate: $A C$

Calculation:

By the cosine rule:

$$
\begin{aligned}
A C^{2} & =(52)^{2}+(72)^{2}-2(52)(72) \cos \left(119^{\circ}\right) \\
& =2704+5184-(-3630.25) \\
& =11518.25 \\
A C & =\sqrt{11518.25} \\
& =107.3 \mathrm{~km} \\
& =107 \mathrm{~km}(\text { to the nearest } \mathrm{km})
\end{aligned}
$$

(iv) Show that the bearing of A from C, to the nearest degree, is 260°.

SOLUTION:

Required to show: The bearing of A from C is 260°
Solution:

$\angle B C N=75^{\circ}$ (Co-interior angles are supplementary)
By the sine rule:

$$
\begin{aligned}
& \frac{52}{\sin A \hat{C} B}=\frac{107.3}{\sin 119^{\circ}} \\
& \begin{aligned}
\sin A \hat{C} B & =\frac{52 \sin 119^{\circ}}{107.3} \\
& =0.4238 \\
A \hat{C} B & =\sin ^{-1}(0.4238) \\
& =25.07^{\circ}
\end{aligned}
\end{aligned}
$$

The bearing of A from $C=360^{\circ}-\left(75^{\circ}+25.07^{\circ}\right)=259.9^{\circ}$
$=260^{\circ}$ (correct to the nearest degree

Q.E.D.

VECTORS AND MATRICES

11. (a) Matrices A and B are such that

$$
A=\left(\begin{array}{ll}
3 & 2 \\
5 & 4
\end{array}\right) \text { and } B=\left(\begin{array}{rr}
4 & 0 \\
3 & -1
\end{array}\right) .
$$

(i) Show by multiplying A and B, that $A B \neq B A$.

SOLUTION:

Data: $A=\left(\begin{array}{ll}3 & 2 \\ 5 & 4\end{array}\right)$ and $B=\left(\begin{array}{rr}4 & 0 \\ 3 & -1\end{array}\right)$
Required to show: $A B \neq B A$
Proof:

$$
\begin{aligned}
A \times B & =\left(\begin{array}{ll}
3 & 2 \\
5 & 4
\end{array}\right)\left(\begin{array}{rr}
4 & 0 \\
3 & -1
\end{array}\right) \\
& =\left(\begin{array}{ll}
e_{11} & e_{12} \\
e_{21} & e_{22}
\end{array}\right) \\
e_{11} & =(3 \times 4)+(2 \times 3) \\
& =12+6 \\
& =18
\end{aligned}
$$

$$
B \times A=\left(\begin{array}{rr}
4 & 0 \\
3 & -1
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
5 & 4
\end{array}\right)
$$

$$
=\left(\begin{array}{ll}
e_{11} & e_{12} \\
e_{21} & e_{22}
\end{array}\right)
$$

$$
e_{11}=(4 \times 3)+(0 \times 5)
$$

$$
=12+0
$$

$$
=12
$$

e_{11} of $A B \neq e_{11}$ of $B A$. There is no need for further working since, regardless of whether the remaining three corresponding entries of $A B$ are equal or not to those of $B A$, all the entries of $A B$ will never be equal to the entries of $B A . \therefore A B \neq B A$.
Q.E.D.
(ii) Find A^{-1}, the inverse of A.

SOLUTION:

Required to find: A^{-1}
Solution:

$$
\begin{aligned}
\operatorname{det} A & =(3 \times 4)-(2 \times 5) \\
& =12-10 \\
& =2 \\
A^{-1}= & \frac{1}{2}\left(\begin{array}{cc}
4 & -(2) \\
-(5) & 3
\end{array}\right) \\
& =\left(\begin{array}{rr}
2 & -1 \\
-\frac{5}{2} & \frac{3}{2}
\end{array}\right)
\end{aligned}
$$

(iii) Write down the 2×2 matrix representing the matrix product $A A^{-1}$.

SOLUTION:

Required to write: The 2×2 matrix $A A^{-1}$.

Solution:

$$
\begin{aligned}
A \times A^{-1} & =I \\
2 \times 2 \times 2 \times 2 & =2 \times 2 \\
I & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

(b) (i) Write the following pair of simultaneous equations as a matrix equation.

$$
\begin{aligned}
& 3 x+2 y=1 \\
& 5 x+4 y=5
\end{aligned}
$$

SOLUTION:

Data: $3 x+2 y=1$ and $5 x+4 y=5$
Required to write: The given pair of simultaneous equations as a matrix equation

Solution:

$\left(\begin{array}{ll}3 & 2 \\ 5 & 4\end{array}\right)\binom{x}{y}=\binom{1}{5}$
(ii) Write the solution of your matrix equation in (b) (i) as a product of two matrices.

SOLUTION:

Required to write: The solution of the matrix equation as a product of two matrices
Solution:

$$
\begin{aligned}
&\left(\begin{array}{ll}
3 & 2 \\
5 & 4
\end{array}\right)\binom{x}{y}=\binom{1}{5} \\
& A\binom{x}{y}=\binom{1}{5} \\
& \times A^{-1} \\
& A \times A^{-1}\binom{x}{y}=A^{-1}\binom{1}{5} \\
& I\binom{x}{y}=A^{-1}\binom{1}{5} \\
&\binom{x}{y}=\left(\begin{array}{rr}
2 & -1 \\
-\frac{5}{2} & \frac{3}{2}
\end{array}\right)\binom{1}{5} \text { as a product of two matrices. }
\end{aligned}
$$

If calculated, (which was not required according to the question) the right hand side would give $\binom{-3}{5}$ and equating corresponding entries gives $x=-3$ and $y=5$.
(c) The position vectors of the points P and Q relative to an origin O , are $O P=\binom{4}{3}$ and $O Q=\binom{5}{0}$ respectively.
The diagram below shows that $P R=3 O P$ and $Q S=3 O Q$.

(i) Express in the form $\binom{x}{y}$, vector

- $O S$

SOLUTION:

Data: Diagram showing position of vectors of the points P and Q, where $O P=\binom{4}{3}$ and $O Q=\binom{5}{0}$ and $P R=3 O P$ and $Q S=3 O Q$.
Required to express: $O S$ in the form $\binom{x}{y}$.
Solution:

$$
\begin{aligned}
O Q & =\binom{5}{0} \\
Q S & =3\binom{5}{0} \\
& =\binom{15}{0}
\end{aligned}
$$

$$
\begin{aligned}
O S & =O Q+Q S \\
& =\binom{5}{0}+\binom{15}{0} \\
& =\binom{20}{0} \text { and is of the form }\binom{x}{y}, \text { where } x=20 \text { and } y=0 .
\end{aligned}
$$

- $P Q$

SOLUTION:

Required to express: $P Q$ in the form $\binom{x}{y}$.
Solution:

$$
\begin{aligned}
P Q & =P O+O Q \\
& =-\binom{4}{3}+\binom{5}{0} \\
& =\binom{1}{-3} \text { and is of the form }\binom{x}{y}, \text { where } x=1 \text { and } y=-3 .
\end{aligned}
$$

- $R S$

SOLUTION:

Required to express: $R S$ in the form $\binom{x}{y}$.
Solution:

$$
\begin{aligned}
P R & =3 O P \\
& =3\binom{4}{3} \\
& =\binom{12}{9} \\
O R & =O P+P R \\
& =\binom{4}{3}+\binom{12}{9} \\
& =\binom{16}{12} \\
R S & =R O+O S \\
& =-\binom{16}{12}+\binom{20}{0} \\
& =\binom{4}{-12} \text { and is of the form }\binom{x}{y}, \text { where } x=4 \text { and } y=-12 .
\end{aligned}
$$

(ii) State TWO geometrical relationships between $P Q$ and $R S$.

SOLUTION:

Required to state: Two geometrical relationships between $P Q$ and $R S$. Solution:

$$
\begin{aligned}
& P Q=\binom{1}{-3} \\
& \begin{aligned}
R S & =\binom{4}{-12} \\
& =4\binom{1}{-3} \\
& =4 P Q
\end{aligned}
\end{aligned}
$$

Hence, $R S$ is a scalar multiple (which is 4) of $P Q$. Therefore, $R S$ and $P Q$ are parallel.

$$
\begin{aligned}
R S & =4\binom{-1}{3} \\
& =4 \times P Q \\
|R S| & =4|P Q|
\end{aligned}
$$

That is to say, the length of $R S$ is 4 times the length of $P Q$.

