

CSEC MATHEMATICS MAY- JUNE 2011 PAPER 2 Section I

1. (a) (i) **Required to calculate:** $\frac{2\frac{1}{4}+1\frac{1}{8}}{4\frac{1}{2}}$.

Calculation:

$$\frac{2\frac{1}{4}+1\frac{1}{8}}{4\frac{1}{2}}$$

We first work the numerator
 $2\frac{1}{4}+1\frac{1}{8}$

$$3\frac{2\frac{1}{4}+1\frac{1}{8}}{\frac{2(1)+1(1)}{8}} = 3\frac{3}{8}$$

Hence,

 $\frac{Numerator}{Denominator} = 3\frac{3}{8} \div 4\frac{1}{2}$

Converting both numerator and denominator into improper fractions. Then

inverting the denominator and multiplying to get:

$$= \frac{27}{8} \div \frac{9}{2}$$
$$= \frac{27}{8} \times \frac{2}{9}$$
$$= \frac{3}{4} \text{ (in exact form)}$$

(ii)

Required to calculate: $3.96 \times 0.25 - \sqrt{0.0256}$ **Calculation:**

The arithmetic is a bit cumbersome, especially with finding the square root of 0.0256. So, we use the calculator to find 3.96 x 0.25, then $\sqrt{0.0256}$, to get

 $3.96 \times 0.25 - \sqrt{0.0256} = 0.99 - 0.16$ = 0.83 (in exact form)

(b) **Required to calculate:** *W*,*X*,*Y* and *Z*. **Calculation:**

The total cost, W, of 6 ½ kg of rice @ \$2.40 per kg = $6\frac{1}{2} \times 2.40 =\$ 15.60 Hence the value of W = \$15.60The cost of 4 bags of potatoes = \$52.80Hence the unit price of potatoes, $X = \frac{\$52.80}{4}$ = \$ 13.20 Hence the value of X = \$13.20The cost of *Y* cartons of milk @ \$2.35 each = \$14.10The value of $Y = \frac{\text{Total cost of milk}}{\text{Cost of 1 carton}}$ $=\frac{\$14.10}{\$2.35}$ = 6 Hence, Y = 6*Z*% VAT = \$9.90 Sub-total = \$82.50 $Z = \frac{V.A.T.}{\text{Sub-Total}} \times 100$ $=\frac{\$9.90}{\$82.50}\times100$ =12The value of Z = 12**Required To Write:** $\frac{x-2}{3} + \frac{x+1}{4}$ as a fraction in its lowest terms. 2. (a) Solution: The LCM of 4 and 3 is 12. So, $\frac{x-2}{3} + \frac{x+1}{4}$ $\frac{4(x-2)+3(x+1)}{12} = \frac{(4x-8)+(3x+3)}{12}$ $=\frac{(7x-5)}{12}$ (as a fraction in its lowest terms) **Data:** $a * b = (a + b)^2 - 2ab$ (b) **Required to calculate:** 3 * 4

Calculation:

In the binary operation of 3 * 4, the value of a = 3, b = 4 $\therefore 3 * 4 = ((3) + (4))^2 - 2(3)(4)$ $= (7)^2 - 24$ = 49 - 24= 25

(c) (i) **Required to factorise:** $xy^3 + x^2y$ **Solution:**

We separate the common terms from each of the two terms. These are shown underlined.

$$xy^{3} + x^{2}y = \underline{xy} \cdot y^{2} + x \cdot \underline{xy}$$
$$= xy(y^{2} + x)$$

(ii) **Required to factorise:** 2mh - 2nh - 3mk + 3nk

Solution:

The four terms are grouped into two terms of two each. We factor out the common factor in each of the two groups to get:

 $2mh - 2nh - 3mk + 3nk = 2h(\underline{m-n}) - 3k(\underline{m-n})$

$$=(m-n)(2h-3k)$$

(d) **Data:** Table of values of the variables x and y. **Required to find:** the value of a and of b **Solution:**

y varies directly as x.	x	у		
This may be expressed as	2	12		
$y \propto x$	5	а		
$\therefore y = kx$	b	48		
(where k is the constant of propertion or constant of propertionality)				

(where *k* is the constant of proportion or constant of proportionality)

When x = 2 and y = 12(data from the table of values) 12 = k(2)12 = 2k $\therefore k = 6$

Hence the equation can now be expressed as y = 6 x

 When x = 5, y = a When x = b, y = 48

 $\therefore a = k(5)$ $\therefore 48 = k(b)$

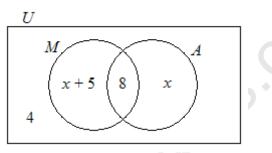
 a = (6)(5) 48 = 6(b)

 = 30 48 = 6b

 $\therefore b = 8$

Hence, the value of a = 30 and the value of b = 8.

3. (a) **Data:** A given Venn diagram, $U = \{$ Students in a class of 35 $\}$



(i) Required to find: The number of students who do not study either Art or Music.
 Solution:

The number of students who do not belong to the set M or the set A is 4 as shown in the complement region of $M \cup A$ and is the number of students who do not study either Art or Music.

(This number is seen on the diagram in $(M \cup A)'$.

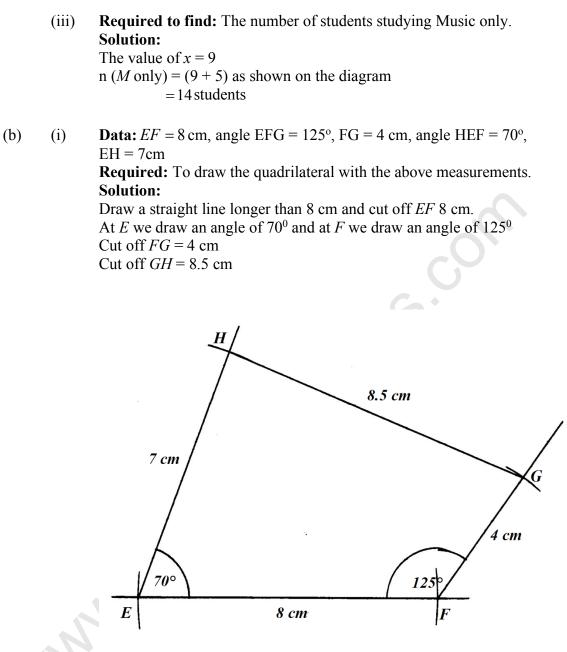
(ii) Required to find: The value of *x*.Solution:The sum of all the numbers of all the s

The sum of all the numbers of all the subsets of the Universal set in the diagram.

= (x + 5) + 8 + (x) + 4= 2x + 17

The total number of students = 35 (data) Hence, we may equate $\therefore 2x + 17 = 35$

$$2x = 35 - 17$$
$$x = 9$$



(ii) Required to find: The length of *GH*. Solution: GH = 8.5 cm (by measurement using the ruler)

4. (a) (i) **Data:** 5-2x < 9

Required to find: *x*

Solution:

The procedure is much the same as solving an equation

$$5-2x < 9$$

$$5 < 9 + 2x$$

$$5-9 < 2x$$

$$-4 < 2x$$

$$\therefore \frac{-4}{2} < x$$

$$-2 < x$$

$$x > -2$$

(ii) **Data:** $x \in Z$

Required to find: The smallest value of *x*

Solution:

 $x \in Z$ $\therefore x_{\min} = -1$

x minimum

-1

-2

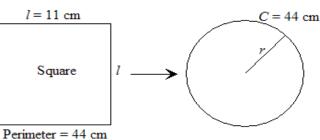
(b)

(i)

Data: 121 cm² a) Required to calculate: *l*, length of side. Calculation: The area of a square is side × side. So, $l \times l = 121$ cm² $\therefore l = \sqrt{121}$ cm = 11 cm

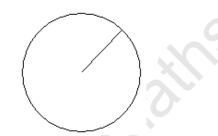
b) Required to find: Perimeter of square. Calculation: Perimeter $= l \times 4$ The side l was found to be 11 cm

The side, *l*, was found to be 11 cm So, perimeter is $=11 \times 4$ = 44 cm



Required to find: The radius of the circle **Solution:**

The circumference of the circle is the same as the perimeter of the Square (data)



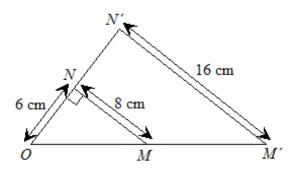
Since the perimeter of the square is 44 cm, then, $2\pi r - 44$

$$2\pi r = 44$$
$$2 \times \frac{22}{7} \times r = 44$$
$$\therefore r = 7 \text{ cm}$$

b) **Required to find:** Area of the circle. **Solution:**

$$A = \pi r^{2}$$
$$= \left(\frac{22}{7}\right)(7)^{2}$$
$$= 154 \text{ cm}^{2}$$

5. (a) **Data:**

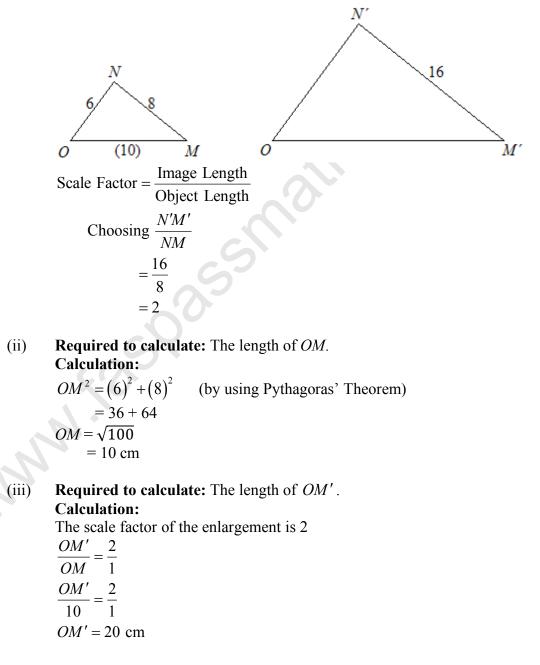


Triangle OM'N' is the image of triangle OMN after undergoing an enlargement, about the center O.

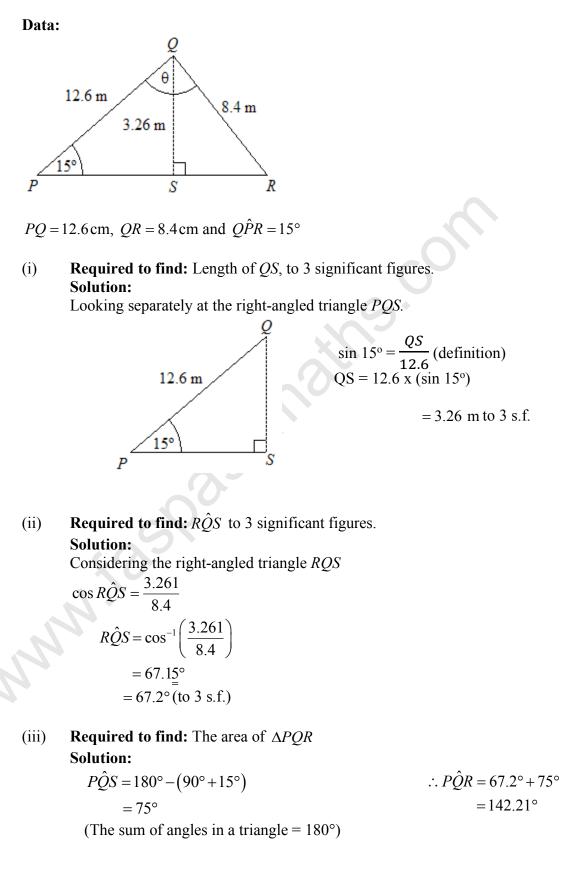
(i) **Required to Find:** Value of *k*, the scale factor. **Solution:**

 $OMN \xrightarrow{Enlargement} OM'N'$,

The center of enlargement is *O*. Separating the 2 triangles so we may better view them.



(b)



In triangle *PRQ* we have two sides and the included angle. So,

Area of
$$\Delta PQR = \frac{1}{2}(QP \times QR)\sin P\hat{Q}R$$

 $= \frac{1}{2}(12.6 \times 8.4)\sin P\hat{Q}R$
 $= \frac{1}{2}(12.6 \times 8.4)\sin 142.21^{\circ}$
 $= 32.42$
 $= 32.4 \text{ cm}^2 (\text{to 3 s.f.})$

6. (a) **Data:**
$$f(x) = 6x + 8$$
 and $g(x) = \frac{x-2}{3}$.
(i) **Required to calculate:** $g\left(\frac{1}{2}\right)$

Calculation:

We substitute $x = \frac{1}{2}$ in g(x) to get

$$g\left(\frac{1}{2}\right) = \frac{\left(\frac{1}{2}\right)-2}{3} = -\frac{1}{2}$$

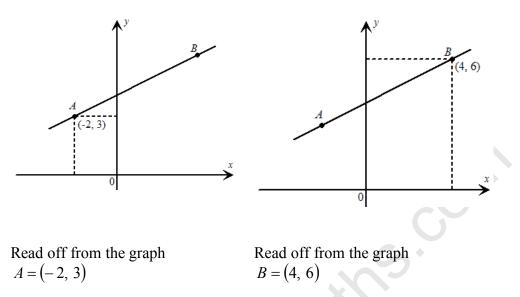
(ii) Required to calculate: An expression for gf(x). Calculation: We could find gf(x) by replacing x in g(x) by f(x). gf(x) = g(f(x)) = g(6x + 8) $= \frac{(6x + 8) - 2}{3} = \frac{6x + 6}{3}$

$$= 2x + 2$$

(iii) **Required to calculate:** $f^{-1}(x)$ **Calculation:**

Let
$$f(x)$$
 be y.
 $y = 6x + 8$
Interchange x and y.
 $x = 6y + 8$
 $x - 8 = 6y$
 $y = \frac{x - 8}{6}$
 $\therefore f^{-1}(x) = \frac{x - 8}{6}$

(b) (i) **Required to find:** The coordinates of *A* and of *B*. **Solution:**



(ii) **Required to find:** The gradient of *AB*. **Solution:** Using the formula for gradient, we get

Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{6 - 3}{4 - (-2)}$
Using *A* as (x_1, y_1) and *B* as (x_2, y_2) OR vice -versa
= $\frac{1}{2}$

(iii) **Required to find:** The equation of the line passing through *A* and *B*. **Solution:**

Choosing A = (-2, 3)

Then using $\frac{y - y_1}{x - x_1} = m$, where (x_1, y_1) is a point on the line and *m* is the gradient. We get

$$\frac{y-3}{x-(-2)} = \frac{1}{2}$$

$$2(y-3) = x+2$$

$$2y-6 = x+2$$

$$2y = x+2+6$$

$$2y = x+8$$

$$y = \frac{1}{2}x+4$$

If, instead, we had chosen B as the point, the equation would have been the same.

7. (a), (b) **Data:** Number of packages = 100

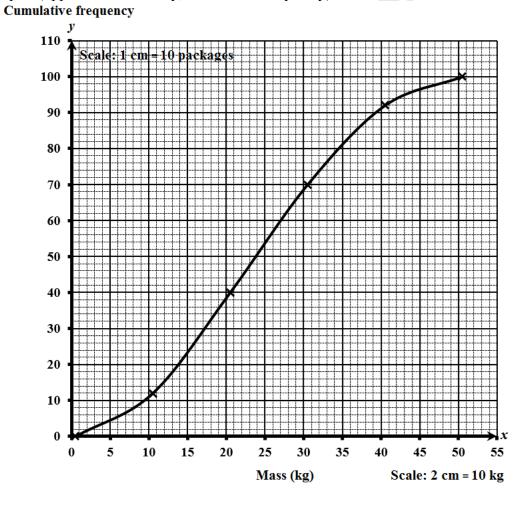
Mass is a continuous variable

L.C.B-lower class boundary

U.C.B-upper class boundary

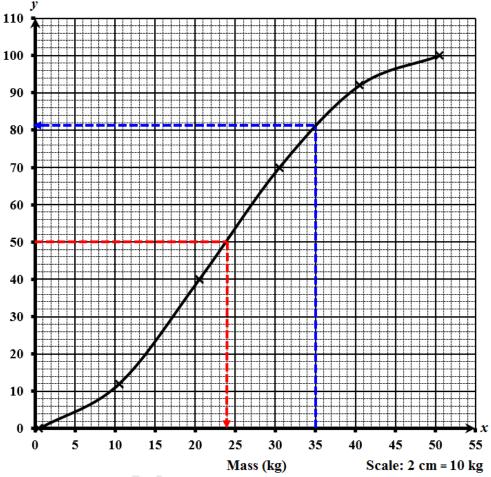
Mass, m (kg)	L.C.B U.C.B.	No. of Packages (Frequency)	Cumulative Frequency	Points to Plot (U.C.B., C.F.)
-	-	0	0	(0.5, 0)
1 - 10	$0.5 \le m < 10.5$	12	0 + 12 = 12	(10.5, 12)
11 – 20	$10.5 \le m < 20.5$	28	12 + 28 = 40	(20.5, 40)
21 - 30	$20.5 \le m < 30.5$	30	40 + 30 = 70	(30.5, 70)
31 - 40	$30.5 \le m < 40.5$	22	70 + 22 = 92	(40.5, 92)
41 - 50	$40.5 \le m < 50.5$	8	92 + 8 = 100	(50.5, 100)

We plot (upper class boundary, cumulative frequency)



(c) (i) **Required to find:** Median mass **Solution:**

Cumulative frequency



The horizontal at 50 is drawn to meet the curve. At the point of meeting, a vertical is dropped to obtain the read off that is the median Median mass = 24 kg (as shown on the diagram)

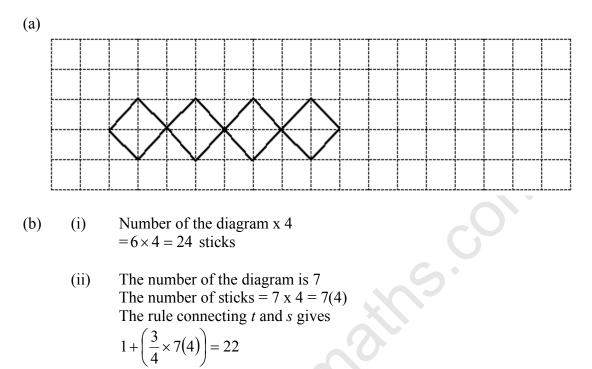
(ii) **Required To Find:** Probability that the mass of a package is less than 35 kg

Solution:

The vertical at 35 is drawn to meet the curve. At the point of meeting, a horizontal is drawn to obtain the read off that is the number of packages that is < 35 kg and which is 81.

$$P(Mass < 35 \text{ kg}) = \frac{\text{No. of packages} < 35 \text{ kg}}{\text{Total no. of packages}}$$
$$= \frac{81}{100}$$

8. Answer Sheet for Question 8



Hence, the number of thumb tacks in the seventh diagram is 22

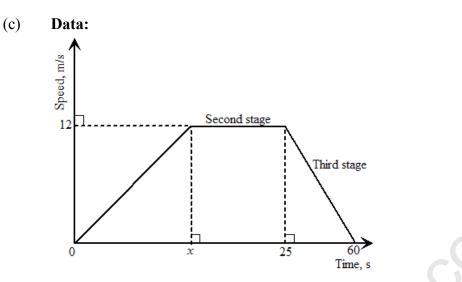
(c)	No. of sticks Rule Connecting No. of Thumb Tacks						
	S	t and s					
	4	$1 + \left(\frac{3}{4} \times 4\right)$	4				
	8	$1 + \left(\frac{3}{4} \times 8\right)$	7				
	12	$1 + \left(\frac{3}{4} \times 12\right)$	10				
	52	$1 + \left(\frac{3}{4} \times 52\right)$	40				
		$1 + \left(\frac{3}{4} \times x\right) = 55$					
(ii)	72	$\frac{3}{4}x = 54$					
		$x = \frac{54 \times 4}{3}$ $= 72$	55				
(d) $t = 1 + \left(\frac{2}{2}\right)^{2}$	$\left(\frac{3}{4}\times s\right)$		1				

(c)

Section II

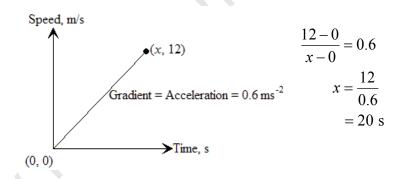
Data: $y = x^2 - x + 3 \dots (1)$ 9. (a) and y = 6 - 3x...(2) **Required to solve:** The value of *x* and of *y* Solution: Solving simultaneously Equating the equations (1) and (2) since both are equal to y. We obtain a quadratic in x. $x^2 - x + 3 = 6 - 3x$ $x^{2} - x + 3 - 6 + 3x = 0$ $x^{2} + 2x - 3 = 0$ (x+3)(x-1)=0x = 1 or -3When x = 1When x =y = 6 - 3(1)y = 6 - 3(-3)= 6 - 3= 3= 15Hence, x = 1, y = 3 **OR** x = -3, y = 1**Data:** $4x^2 - 8x - 2 \equiv a(x+h)^2 + k$, a, h and k are constants. (b) (i) **Required to express:** $4x^2 - 8x - 2$ in the form $a(x+h)^2 + k$. Solution: $4x^{2} - 8x - 2 = 4(x^{2} - 2x) - 2$ = 4[(x - 1)^{2} - 1] - 2 = 4(x - 1)^{2} - 4 - 2 = 4(x - 1)^{2} - 6 $\frac{1}{2} \text{ coefficient of } -2x = \frac{1}{2}(-2)$ = -1 Therefore $4(x-1)^2 - 6$ is of the form $a(x+h)^2 + k$ where a = 4, h = -1and k = -6. (Note that we could have also expanded the right hand side and equated coefficients to obtain the same solution) **Required to find:** The *x* – coordinate of the minimum point on f(x)(ii) Solution:

$$4(x-1)^2 - 64(x-1)^2 \ge 0, \forall x∴ minimum f(x) = 4(0) - 6 = -6This occurs when $4(x-1)^2 = 0$ and $x = 1$$$

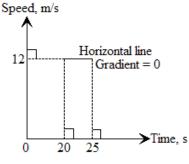


During the first stage the car's speed increases from 0 ms^{-1} to 12 ms^{-1} . Acceleration = 0.6 ms⁻² is constant and shown by a straight line branch.

(i) Required to find: Value of x.Solution: The gradient of the line on a velocity-time graph gives the acceleration



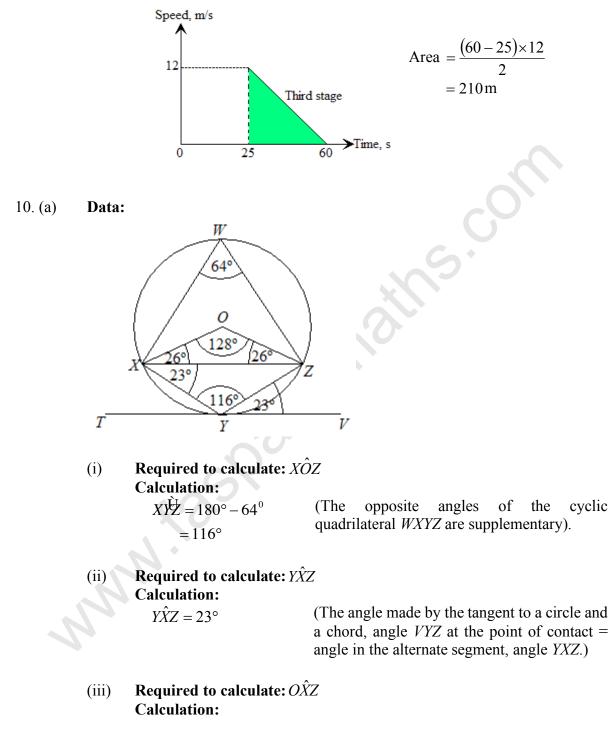
(ii) **Required to explain:** What takes place during the second stage. **Solution:**



In the second stage of the journey, from 20 to 25 seconds, the velocity is constant as the gradient is 0. There is no acceleration or the acceleration is 0 ms⁻². The branch is a horizontal line and the car is moving at the constant speed of 12 ms^{-1} .

(iii) **Required to find:** The distance travelled during the third stage. **Solution:**

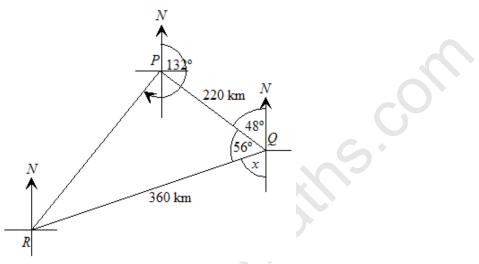
The area under a speed – time graph gives distance covered. The third stage is shown as the shaded triangle



OX = OZ (radii of the same circle) Triangle OXZ is isosceles (two sides are equal) and the base angles are therefore equal

$$O\hat{X}Z = \frac{(180^\circ - 128^\circ)}{2}$$
 (The sum of angles in a triangle = 180°)
$$= \frac{52^\circ}{2}$$
$$= 26^\circ$$

(b) Data:



(i) **Required to calculate:** The value of x. **Calculation:** $x^{\circ} = 180^{\circ} - (48^{\circ} + 56^{\circ})$

 $= 76^{\circ}$ (The angles at a point in a straight line $= 180^{\circ}$)

(ii) **Required to calculate:** The length of *RP*. **Calculation:**

Applying the cosine rule to triangle PQR since we have two sides and the included angle

$$(RP)^{2} = (220)^{2} + (360)^{2} - 2(220)(360)\cos 56^{\circ}$$

= 48400 + 129600 - (158400)(cos 56^{\circ})
$$RP = \sqrt{178000 - (158400)(\cos 56^{\circ})}$$

= 299.0
= 299 km

(iii) Required to calculate: The bearing of R from P. Calculation:

Using the sine rule on triangle *PQR*

$$\frac{RQ}{\sin R\hat{P}Q} = \frac{RP}{\sin 56^{\circ}}$$
$$\frac{360}{\sin R\hat{P}Q} = \frac{299}{\sin 56^{\circ}}$$
$$\sin R\hat{P}Q = \frac{360 \times \sin 56^{\circ}}{299}$$
$$R\hat{P}Q = \sin^{-1}\left(\frac{360 \times \sin 56^{\circ}}{299}\right)$$
$$= 86.5^{\circ}$$

Bearing is direction measured from North in a clockwise direction \therefore Bearing of *R* from *P*: $132^0 + 86.5^0$

 $= 218.5^{\circ}$

11. (a) **Data:** Matrix,
$$M = \begin{pmatrix} 3 & 5 \\ 2 & 4 \end{pmatrix}$$

Required to calculate: Inverse of the matrix **Calculation:**

We first find the determinant of Mdet M = (4)(3) - (5)(2)

$$=12 - 10$$

= 2

Now we find the inverse of *M*.

$$M^{-1} = \frac{1}{2} \begin{pmatrix} 4 & -(5) \\ -(2) & 3 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{4}{2} & -\frac{5}{2} \\ -\frac{2}{2} & \frac{3}{2} \end{pmatrix}$$
$$= \begin{pmatrix} 2 & -2\frac{1}{2} \\ -1 & 1\frac{1}{2} \end{pmatrix}$$

(b) **Data:**
$$R(7, 2) \xrightarrow{M = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}} R'(2, -7)$$

 $T(-5, 4) \xrightarrow{M = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}} T'(4, 5)$

(i) **Required to calculate:** The value of *a* and of *b*. **Calculation:**

$$\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -7 \end{pmatrix}$$
$$^{2 \times 2} \quad ^{2 \times 1} = \begin{pmatrix} e_{11} \\ e_{12} \end{pmatrix}$$
$$\begin{pmatrix} 2a \\ 7b \end{pmatrix} = \begin{pmatrix} 2 \\ -7 \end{pmatrix}$$

Both are 2x1 matrices and are equal. So equating corresponding entries we obtain

$$2a = 2$$

$$a = 1$$

$$\therefore M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

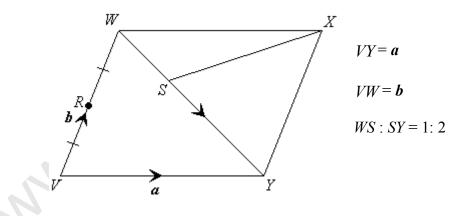
$$7b = -7$$

$$b = -1$$

(ii) **Required to describe:** The transformation that *M* represents. **Solution:**

 $M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ is the matrix that represents a 90° clockwise rotation about the origin.

(c) **Data:** *WXYV* is a parallelogram.



(i)

a)

Required To Write: An expression in terms of *a* and *b* for \overrightarrow{WY} . **Solution:**

Applying the vector triangle law WY = WV + VY= a + (-b)

b) Required to write: An expression in terms of a and b for \overrightarrow{WS} . Solution:

$$WS = \frac{1}{3}WY$$
$$= \frac{1}{3}(a - b)$$
$$= \frac{a - b}{3} \text{ or } \frac{1}{3}a - \frac{1}{3}b$$

c) **Required To Write:** An expression in terms of *a* and *b* for \overline{SX} . Solution:

Applying the vector triangle law

$$SX = SW + WX \qquad (SW = -WX)$$
$$= -\frac{1}{3}a + \frac{1}{3}b + a$$
$$= \frac{2}{3}a + \frac{1}{3}b$$

(ii) **Required To Prove:** *R*, *S* and *X* are collinear. **Solution:**

Applying the vector triangle law

$$RX = RW + WX \qquad \overrightarrow{SW} = -\overrightarrow{WS} \qquad SX = \frac{2}{3}a + \frac{1}{3}b$$
$$= \frac{1}{2}b + a \qquad = \frac{2}{3}\left(a + \frac{1}{2}b\right)$$
$$= \frac{2}{3}RX$$
$$\downarrow$$
Scalar Multiple

 \overrightarrow{SX} is a scalar multiple of \overrightarrow{RX} and therefore these vectors are parallel. But X is a common point on both vectors. $\therefore R$, S and X are collinear.

