JANUARY 2009 CXC MATHEMATICS GENERAL PROFICIENCY (PAPER 2)

Section I

1. a. Required To Calculate: $\frac{3 \frac{3}{4}}{2 \frac{1}{3}-\frac{5}{6}}$

Calculation:
Denominator:
$2 \frac{1}{3}-\frac{5}{6}$
$2 \frac{2-5}{6}=1 \frac{8-5}{6}$
$=1 \frac{1}{2}$
and
$\frac{3 \frac{3}{4}}{1 \frac{1}{2}}=\frac{\frac{15}{4}}{\frac{3}{2}}$
$=\frac{15}{4} \times \frac{2}{3}$
$=\frac{5}{2}$
$=2 \frac{1}{2}$
b. (i) Required To Calculate: Value of one BDS\$ in EC\$ Calculation:

$$
\begin{aligned}
B D S \$ 2000 & \equiv E C \$ 2700 \\
B D S \$ 1 & \equiv E C \$ \frac{2700}{2000} \\
& =E C \$ 1.35
\end{aligned}
$$

(ii) Required To Calculate: Amount of BDS\$ received for exchanging EC\$432.00
Calculation:

$$
\mathrm{EC} \$ 1.35 \equiv \mathrm{BDS} \$ 1.00
$$

$$
\mathrm{EC} \$ 1.00 \equiv \mathrm{BDS} \$ \frac{1.00}{1.35}
$$

$$
\mathrm{EC} \$ 432 \equiv \mathrm{BDS} \$ \frac{1.00}{1.35} \times 432
$$

$$
=\mathrm{BDS} \$ 320
$$

c. Data: Principal $\$ 24000$ receives 8% per annum compound interest. Required To Calculate: Amount of money after 2 years. Calculation:
Interest at the end of $1^{\text {st }}$ year $=\frac{8}{100} \times 24000$

$$
=\$ 1920
$$

Principal at start of second year $=\$ 24000+\$ 1920$

$$
=\$ 25920
$$

Interest at the end of $2^{\text {nd }}$ year $=\frac{8}{100} \times 25920$

$$
=\$ 2073.60
$$

Hence, total amount of money in the account at the end of 2 years

$$
\begin{aligned}
& =\$ 25920+\$ 2073.60 \\
& =\$ 27993.60
\end{aligned}
$$

OR

$$
\begin{aligned}
A & =P\left(1+\frac{R}{100}\right)^{n} \\
A & =24000\left(1+\frac{8}{100}\right)^{2} \\
& =24000(1.08)^{2} \\
& =\$ 27993.60
\end{aligned}
$$

2. a. Required To Simplify: $\frac{2 m}{n}-\frac{5 m}{3 n}$

Solution:

$$
\begin{aligned}
& \frac{2 m}{n}-\frac{5 m}{3 n} \\
& \frac{3(2 m)-5 m}{3 n}=\frac{6 m-5 m}{3 n} \\
& =\frac{m}{3 n} \text { as a single fraction }
\end{aligned}
$$

b. Data: $a^{*} b=a^{2}-b$

Required To Calculate: 5*2
Calculation:

$$
\begin{aligned}
5 * 2 & =(5)^{2}-2 \\
& =25-2 \\
& =23
\end{aligned}
$$

c. Required To Factorise: $3 x-6 y+x^{2}-2 x y$

Solution:

$$
\begin{aligned}
3 x-6 y+x^{2}-2 x y & =3(x-2 y)+x(x-2 y) \\
& =(x-2 y)(3+x)
\end{aligned}
$$

d. Data: A 21 cm drinking straw cut into 3 pieces of varying length.
(i) Required To Find: Length of each piece in terms of x.

Solution:

$$
\begin{aligned}
\text { Length of } 1^{\text {st }} \text { piece } & =x \mathrm{~cm} \text { (data) } \\
\text { Length of } 2^{\text {nd }} \text { piece } & =(x-3) \mathrm{cm} \text { (data) } \\
\text { Length of } 3^{\text {rd }} \text { piece } & =2 \times x \\
& =2 x \mathrm{~cm} \text { (data) }
\end{aligned}
$$

(ii) Required To Find: Expression in terms of x to represent the sum of the lengths of all three pieces.

Solution:

Sum of the lengths of all three pieces of straw

$$
\begin{aligned}
& =x+(x-3)+2 x \\
& =x+x+2 x-3 \\
& =(4 x-3) \mathrm{cm}
\end{aligned}
$$

(iii) Required To Calculate: x

Calculation:

$$
\begin{aligned}
4 x-3 & =21 \\
4 x & =21+3 \\
4 x & =24 \\
x & =\frac{24}{4} \\
& =6
\end{aligned}
$$

3. a. Data: School of 90 form 5 students where 54 study P.E., 42 Music, x both and 6 neither.
(i)-(ii) Required To Complete: Venn diagram to represent the information given.
Solution:

(iii) Required To Calculate: x Calculation:

$$
\begin{aligned}
(54-x)+x+(42-x) & =90 \\
102-x & =90 \\
x & =102-90 \\
& =12
\end{aligned}
$$

b. Data: Diagram as shown below.

(i) Required To Calculate: Length of $M K$. Calculation:

$$
\begin{aligned}
\frac{M K}{10} & =\sin 30^{\circ} \\
M K & =10 \sin 30^{\circ} \\
& =5 \mathrm{~m}
\end{aligned}
$$

(ii) Required To Calculate: Length of $J K$.

Calculation:

$$
\begin{aligned}
J M & =\sqrt{(13)^{2}-(5)^{2}} \quad \text { (Pythagoras' Theorem) } \\
& =\sqrt{144} \\
& =12 \mathrm{~m}
\end{aligned}
$$

Length of $J K=$ Length of $J M-$ Length of $K M$

$$
\begin{aligned}
& =12-5 \\
& =7 \mathrm{~m}
\end{aligned}
$$

4. Data: Diagram with straight line cutting the axes at P and Q.

a. \quad Required To State: Coordinates of P and Q.

Solution:
Line cuts the y-axis at $3, \quad \therefore P=(0,3)$.
Line cuts the x - axis at $-2, \therefore Q=(-2,0)$.
b. (i) Required To Find: Gradient of $P Q$. Solution:
Gradient of $P Q=\frac{3-0}{0-(-2)}$

$$
=\frac{3}{2}
$$

(ii) Required To Find: Equation of $P Q$. Solution:
Equation of $P Q$ is

$$
\begin{aligned}
\frac{y-3}{x-0} & =\frac{3}{2} \quad \text { Using point at } P \\
2 y-6 & =3 x \\
2 y & =3 x+6 \\
& =y=\frac{3}{2} x+3
\end{aligned}
$$

OR

$$
\begin{aligned}
\frac{y-0}{x-(-2)} & =\frac{3}{2} \quad \text { Using point at } Q \\
2 y & =3 x+6
\end{aligned}
$$

OR

$y=m x+c$ is the general equation of a straight line where gradient, $m=\frac{3}{2}$ and intercept on the vertical axis is 3 .

$$
\therefore y=\frac{3}{2} x+3
$$

c. Data: Point $(-8, t)$ lies on $P Q$.

Required To Calculate: t

Calculation:

Equation of $P Q$ is $y=\frac{3}{2} x+3$.

$$
\begin{aligned}
t & =\frac{3}{2}(-8)+3 \\
t & =-12=3 \\
& =-9
\end{aligned}
$$

(d) Data: $A B$ is perpendicular to $P Q$ and passes through $(6,2)$.

Required To Find: Equation of $A B$.
Solution:

Gradient of $P Q=\frac{3}{2}$, then gradient of $A B=-\frac{2}{3}$.
(Product of the gradients of perpendicular lines $=-1$).
Equation of $A B$ is

$$
\begin{aligned}
\frac{y-2}{x-6} & =-\frac{2}{3} \\
3(y-2) & =-2(x-6) \\
3 y-6 & =-2 x+2 \\
3 y & =-2 x+12 \\
3 y & =-2 x+18
\end{aligned}
$$

$\div 3$

$$
y=-\frac{2}{3} x+6
$$

is of the form $y=m x+c$, where $m=-\frac{2}{3}$ and $c=6$.

5. Data:

a. Required To Calculate: Volume of large cereal box.

Calculation:
Volume $=(25 \times 8 \times 36)$

$$
=7200 \mathrm{~cm}^{3}
$$

b. Required To Calculate: Total surface area of large cereal box.

Calculation:

Area of front and back faces $=2(25 \times 36) \mathrm{cm}^{2}$
Area of left and right faces $=2(8 \times 36) \mathrm{cm}^{2}$
Area of base and top faces $=2(25 \times 8) \mathrm{cm}^{2}$
Total area of large cereal box
$=2(25 \times 36)+2(8 \times 36)+2(25 \times 8)$
$=1800+576+400$
$=2776 \mathrm{~cm}^{2}$
c. Data: One large box can fill six small boxes each of equal volume.
(i) Required To Calculate: Volume of one small cereal box.

Calculation:
Volume of large cereal box $=6 \times$ Volume of small cereal box
Volume of small cereal box $=\frac{7200}{6}$

$$
=1200 \mathrm{~cm}^{3}
$$

(ii) Required To List: Two different pairs of values which the company can use for the height and width of a small box.
Solution:

In a small cereal box, let
length $=l \mathrm{~cm}$ and width $=w \mathrm{~cm}$.

$$
\begin{aligned}
l \times w \times 20 & =1200 \\
l \times w & =60
\end{aligned}
$$

There are an infinite number of possible choices for values of l and w such that $l \times w=60$.
For simplicity, we may choose two integral values, such as Let $l=10$ and $w=6$ and $l=12$ and $w=5$ as the two pairs of values.
6. a. Required To Construct: Rectangle $P Q R S$ with $P Q=7.0 \mathrm{~cm}$ and $Q R=5.5 \mathrm{~cm}$. Solution:

b. Data: $\Delta L \longrightarrow \Delta M$
(i) Required To Calculate: Translation vector that maps ΔL onto ΔM. Calculation:

L is mapped onto M by a horizontal shift of 4 units to the right and 4 units vertically upwards. This may be represented by the translation vector, T, where
$T=\binom{4}{4}$.
(ii) Data: $\Delta L \longrightarrow \Delta N$, by an enlargement, say E.
(a) Required To Find: Centre of enlargement, G on diagram. Solution:

(b) Required To State: Coordinates of G. Solution:
G is $(-5,0)$, as seen on the diagram.
(c) Required To Calculate: Scale factor of the enlargement. Calculation:

Measuring the image length and its corresponding object length.

$$
\begin{aligned}
\frac{\text { Image Length }}{\text { Object Length }} & =\frac{6}{3} \\
& =2
\end{aligned}
$$

Therefore, scale factor of the enlargement is 2 .
7. Data: Given table of values for marks in a test obtained by 70 students.
a. Required To Complete: Table to show cumulative frequency distribution.

Solution:

Modifying the table.
Distribution - discrete variable.

Marks	Frequency. \boldsymbol{f}	Cumulative Lrequency (C.F.) U.C.B.	Points to be plotted (U.C.B, C.F.)
			$(0,0)$
$1-10$	2	2	$(10,2)$
$11-20$	5	7	$(20,7)$
$21-30$	9	16	$(30,16)$
$31-40$	14	$14+16=30$	$(40,30)$
$41-50$	16	$16+30=46$	$(50,46)$
$51-60$	12	$12+46=58$	$(60,58)$
$61-70$	8	$8+58=66$	$(70,66)$
$71-80$	4	$4+66=70$	$(80,70)$

A cumulative frequency curve must start from the horizontal axis. By checking the values of U.C.B., we find that an initial point with U.C.B $=0$ and C.F. $=0$.
b. (i) Required To Draw: Cumulative frequency curve for the information given.

Solutio

Cumulative Frequency Curve

(ii) Required To State: Assumption made when drawing the curve through the point $(0,0)$.

Solution:

In drawing the curve with a starting point at $(0,0)$, we are assuming that no student obtained a mark of 0 . This also seems clear from the table of values that is given.
c. Required To Find: Number of students who passed the test.

Solution:
If the pass mark is 47 (which corresponds to a cumulative frequency value of 41), then the number of students who passed the test is $70-41=29$.
d. Required To Calculate: Probability randomly chosen student had a mark less than or equal to 30 .

Calculation:

$P($ Student obtained a mark $\leq 30)=\frac{\text { No. of students who obtained a mark } \leq 30}{\text { Total no. of students }=\sum f}$

$$
\begin{aligned}
& =\frac{16}{70} \\
& =\frac{8}{35}
\end{aligned}
$$

8. Data: Pattern made up of lines and dots.
a. Required To Draw: Fourth diagram in the sequence.

Solution:
The fourth diagram in the sequence is

b. Required To Complete: Table given.

Solution:

No. of dots, \boldsymbol{d}	Pattern connecting \boldsymbol{l} and \boldsymbol{d}	No. of line segments, \boldsymbol{l}
5	$2 \times 5-4$	6
8	$2 \times 8-4$	12
11	$2 \times 11-4$	18
	\vdots	\vdots
(i)	62	\vdots

c. (i) Required To Find: No. of dots in the $6^{\text {th }}$ diagram of the sequence.

Solution:

The sequence of dots d is

$$
\begin{array}{ll}
d= & \\
5 & 1^{\text {st }} \\
5+3=8 & 2^{\text {nd }} \\
8+3=11 & 3^{\text {rd }} \\
11+3=14 & 4^{\text {th }} \\
14+3=17 & 5^{\text {th }} \\
17+3=20 & 6^{\text {th }}
\end{array}
$$

\therefore In the $6^{\text {th }}$ diagram of the sequence, the number of dots, $d=20$.
(ii) Required To Find: Number of line segments in the $7^{\text {th }}$ diagram of the sequence.

Solution:

In the $7^{\text {th }}$ diagram
$d=$

20	$6^{\text {th }}$
$3+20=23$	$7^{\text {th }}$

\therefore No. of line segments $=2 \times 23-4$

$$
\begin{aligned}
& =46-4 \\
& =42
\end{aligned}
$$

(iii) Required To Find: The rule which relates l to d. Solution:
By observing the pattern values of d and l

	2 is constant \times value of $\mathrm{d}-$ constant $=4$
5	$2 \times 5-4$
8	$2 \times 8-4$
11	$2 \times 11-4$
62	$2 \times 62-4$
92	$2 \times 92-4$

$$
\begin{aligned}
& l=2 \times d-4 \\
& l=2 d-4
\end{aligned}
$$

9. a. Data: $\frac{p}{2}=\sqrt{\frac{t+r}{g}}$

Required To Make: t the subject of the formula.

Solution:

$\frac{p}{2}=\sqrt{\frac{t+r}{g}}$
Squaring to remove $\sqrt{ }$

$$
\begin{aligned}
\left(\frac{p}{2}\right)^{2} & =\left(\sqrt{\frac{t+r}{g}}\right)^{2} \\
\frac{p^{2}}{4} & =\frac{t+r}{g} \\
g \times p^{2} & =4(t+r)
\end{aligned}
$$

$$
\begin{aligned}
g p^{2} & =4 t+4 r \\
g p^{2}-4 r & =4 t \\
4 t & =g p^{2}-4 r \\
t & =\frac{g p^{2}-4 r}{4} \text { or } \frac{g p^{2}}{4}-r
\end{aligned}
$$

b. Data: $f(x)=2 x^{2}-4 x-13$
(i) Required To Express: $f(x)$ in the form $f(x)=a(x+h)^{2}+k$.

Solution:

$$
\begin{aligned}
f(x) & =2 x^{2}-4 x-13 \\
& =2\left(x^{2}-2 x\right)-13
\end{aligned}
$$

Half the coefficient of $-2 x=\frac{1}{2}(-2)$

$$
=-1
$$

$$
\begin{gathered}
f(x)=2(x-1)^{2}+* \\
2\left(x^{2}-2 x+1\right)=2 x^{2}-4 x+2
\end{gathered}
$$

$$
\underline{-15}=*
$$

$$
-13
$$

Hence, $f(x)=2 x^{2}-4 x-13 \equiv 2(x-1)^{2}-15$ is of the form $a(x+h)^{2}+k$, where $a=2, h=-1$ and $k=-15$.

OR

$$
\begin{aligned}
2 x^{2}-4 x-13 & =a(x+h)^{2}+k \\
& =a\left(x^{2}+2 h x+h^{2}\right)+k \\
& =a x^{2}+2 a h x+a h^{2}+k
\end{aligned}
$$

Equating coefficient of x^{2}.
$a=2$
Equating coefficient of x .

$$
-4=2(2) h
$$

$$
h=-1
$$

Equating constants.
$2(-1)^{2}+k=-13$

$$
k=-15
$$

$\therefore 2 x^{2}-4 x-13 \equiv 2(x-1)^{2}-15$, where a, h and k are already given.
(ii) Required To Find: Values of x at which $f(x)$ cuts the x - axis

Solution:

Assuming the graph is $f(x)=2 x^{2}-4 x-13, f(x)$ cuts the x - axis at $f(x)=0$.
Let

$$
\begin{aligned}
2 x^{2}-4 x-13 & =0 \\
x & =\frac{-(-4) \pm \sqrt{(-4)^{2}-4(2)(-13)}}{2(2)} \\
& =\frac{4 \pm \sqrt{16+104}}{4} \\
& =\frac{4 \pm \sqrt{120}}{4} \\
& =\frac{4 \pm \sqrt{4 \times 30}}{4} \\
& =\frac{4 \pm 2 \sqrt{30}}{4} \\
& =1 \pm \frac{\sqrt{30}}{2}
\end{aligned}
$$

$\therefore f(x)$ cuts the x-axis at $x=1+\frac{\sqrt{30}}{2}$ and $1-\frac{\sqrt{30}}{2}$.
(iii) Required To Find: Interval for which $f(x) \leq 0$.

Solution:
$f(x)=2 x^{2}-4 x-13$. Coefficient of $x^{2}>0$, therefore $f(x)$ is a parabola in shape with a minimum point.

$f(x) \leq 0$ for $\left\{x: 1-\frac{\sqrt{30}}{2} \leq x \leq 1+\frac{\sqrt{30}}{2}\right\}$
(iv) Required To Find: Minimum value of $f(x)$.

Solution:

$$
\begin{aligned}
f(x) & =2 x^{2}-4 x-13 \\
& =2(x-1)^{2}-15 \\
2(x-1)^{2} & \geq 0 \quad \forall x \\
\therefore f(x)_{\min } & =0-15 \\
& =-15
\end{aligned}
$$

OR

$$
f(x)=2 x^{2}-4 x-13
$$

The axis of symmetry of $f(x)$ is $x=\frac{-(-4)}{2(2)}$

$$
=1
$$

The axis of symmetry passes through the minimum point and hence $x=1$ at the minimum point.

$$
\begin{aligned}
f(1) & =2(1)^{2}-4(1)-13 \\
& =-15 \\
\therefore f(x)_{\min } & =-15
\end{aligned}
$$

OR

The x coordinates of the minimum point is half way between the x value and which $f(x)$ cuts the x - axis $=\frac{1+\frac{\sqrt{30}}{2}+1-\frac{\sqrt{30}}{2}}{2}$

$$
\begin{aligned}
& =\frac{2}{2} \\
& =1 \\
f(1) & =-15 \\
\therefore f(x)_{\min } & =-15
\end{aligned}
$$

(v) Required To Find: x at which $f(x)$ is minimum.

Solution:

$$
\begin{aligned}
f(x) & =2(x-1)^{2}-15 \\
f(x)_{\min } & =-15 \text { at } 2(x-1)^{2}=0
\end{aligned}
$$

That is, $(x-1)^{2}=0$ and $x=1$.
10. a. Data: $f: x \rightarrow x-3$ and $g: x \rightarrow x^{2}-1$.
(i) Required To Calculate: $f(6)$.

Calculation:

$$
\begin{aligned}
f(6) & =6-3 \\
& =3
\end{aligned}
$$

(ii) Required To Calculate: $f^{-1}(x)$.

Calculation:

Let

$$
\begin{aligned}
y & =x-3 \\
y+3 & =x \\
x & =y+3
\end{aligned}
$$

Replace y by x

$$
f^{-1}: x \rightarrow x+3
$$

(iii) Required To Prove: $f g(2)=f g(-2)=0$.

Proof:

$$
\begin{aligned}
g(2) & =(2)^{2}-1 \\
& =4-1 \\
& =3 \\
f g(2) & \equiv f(3) \\
& =3-3 \\
& =0 \\
g(-2) & =(-2)^{2}-1 \\
& =4-1 \\
& =3 \\
f g(-2) & =f(3) \\
& =3-3 \\
& =0 \\
f g(2) & =f g(-2)=0
\end{aligned}
$$

Q.E.D.
b. Data: A distance time graph for a train travelling between stations A and B.
(i) Required To Find: Time during with train was a rest.

Solution:

Train was at rest at B for $60-40=20$ minutes.
(ii) Required To Find: Average speed of the train from A to B. Solution:

$$
\begin{aligned}
\text { Average speed } & =\frac{\text { Total distance covered }}{\text { Total time taken }} \\
& =\frac{100 \mathrm{~km}}{\left(\frac{40-0}{60}\right) \mathrm{hr}} \\
& =\frac{100}{\frac{2}{3}} \mathrm{kmh}^{-1} \\
& =150 \mathrm{kmh}^{-1}
\end{aligned}
$$

(iii) Required To Find: Time taken for the train to travel from B to C. Solution:
Time taken from B to $\mathrm{C}=\frac{\text { Distance from B to } \mathrm{C}}{\text { Average speed from B to } \mathrm{C}}$

$$
\begin{aligned}
& =\frac{50 \mathrm{~km}}{60 \mathrm{kmh}^{-1}} \\
& =\frac{5}{6} \text { hour } \\
& =50 \text { minutes }
\end{aligned}
$$

(iv) Required To Draw: Line segment which describes the journey from B to C. Solution:

11. a. Data: Table of values for $y=\frac{1}{2} \tan x$.
(i) Required To Complete: Table of values given. Solution:

\boldsymbol{x}	10°	20°	30°	40°	50°	$60^{\circ \circ}$
\boldsymbol{y}	0.09	0.18	0.29	0.42	0.60	0.87

Note: When $x=10^{\circ}, y=0.09$ which was erroneously given as 0.13 in the exam paper. This value has been altered.
(ii) Required To Draw: Graph of $y=\frac{1}{2} \tan x$.

Solution:

(iii) Required To Find: x when $y=0.7$.

Solution:

When $y=0.7, x=54.5^{\circ} \quad$ (Read off).
b. Data: Diagram as shown below.

(i) Required To Calculate: $O \hat{A} E$

Calculation:
$O \hat{A} E=90^{\circ}$
(The angle made by a tangent to a circle and a radius, at the point of contact $=90^{\circ}$). Similarly for $O \hat{B} E$.
(ii) Required To Calculate: $A \hat{O} B$

Calculation:

$$
\begin{aligned}
A \hat{O} B & =360^{\circ}-\left(90^{\circ}+90^{\circ}+48^{\circ}\right) \\
& =132^{\circ}
\end{aligned}
$$

$\left(\right.$ The sum of the angles in a quadrilateral $\left.=360^{\circ}\right)$.
(iii) Required To Calculate: $A \hat{C} B$

Calculation:

A chord $A B$ subtends twice the angle at the centre of a circle, that it subtends at the circumference, standing on the same arc.

$$
\begin{aligned}
\therefore A \hat{C} B & =\frac{1}{2}\left(132^{\circ}\right) \\
& =66^{\circ}
\end{aligned}
$$

(iv) Required To Calculate: $A \hat{D} B$

Calculation:

$$
\begin{aligned}
A \hat{D} B & =180^{\circ}-66^{\circ} \\
& =114^{\circ}
\end{aligned}
$$

(The opposite angles of cyclic quadrilateral are supplementary).
12. a. Data: Diagram as shown below.

(i) Required To Calculate: Length of UW.

Calculation:

$$
\begin{aligned}
U W^{2} & =(8)^{2}+(10)^{2}-2(8)(10) \cos 60^{\circ} \quad(\text { Cosine Rule }) \\
& =64+100-160 \times \frac{1}{2} \\
& =164-80 \\
& =84 \\
U W & =\sqrt{84} \\
& =9.165 \\
& =9.17 \mathrm{~m} \text { (to } 2 \text { decimal places) }
\end{aligned}
$$

(ii) Required To Calculate: $U \hat{V} W$

Calculation:

$$
\begin{gathered}
\frac{9.165}{\sin U \widehat{V} W}=\frac{11}{\sin 40^{\circ}} \\
\begin{aligned}
\sin U \hat{V} W & =\frac{9.165 \sin 40^{\circ}}{11} \\
& =0.535
\end{aligned} \\
\begin{aligned}
U \hat{V} W & =\sin ^{-1}(0.535) \\
& =32.34^{\circ}
\end{aligned}
\end{gathered}
$$

$$
=32.3^{\circ} \text { (to the nearest } 0.1^{\circ} \text {) }
$$

(iii) Required To Calculate: Area of $\triangle T U W$ Calculation:

$$
\begin{aligned}
\text { Area } & =1 / 2(8 \times 10) \sin 60^{0} \\
& =34.64 \mathrm{~cm}^{2}
\end{aligned}
$$

b.NO SOLUTION HAS BEEN OFFERED AS THIS PART OF THE QUESTION IS ON EARTH GEOMETRY WHICH HAS BEEN REMOVED FROM THE COURSE.

13. Data: Diagram showing vectors $\overrightarrow{O P}$ and $\overrightarrow{O Q}$.

a. (i) Required To Express: $\overrightarrow{O P}$ in the form $\binom{x}{y}$.

Solution:

P is the point (3,2), as seen on the diagram.
$\overrightarrow{O P}=\binom{3}{2}$ is of the form $\binom{x}{y}$ where $x=3$ and $y=2$.
(ii) Required To Express: $\overrightarrow{O Q}$ in the form $\binom{x}{y}$.

Solution:

Q is the point $(-1,3)$ as seen on the diagram. $\overrightarrow{O Q}=\binom{-1}{3}$ is of the form $\binom{x}{y}$ where $x=-1$ and $y=3$.
b. Data: R has coordinates $(8,9)$.
(i) Required To Express: $\overrightarrow{Q R}$ in the form $\binom{x}{y}$.

Solution:

R is $(8,9)$.

$$
\begin{aligned}
\overrightarrow{O R} & =\binom{8}{9} \\
\overrightarrow{Q R} & =\overrightarrow{Q O}+\overrightarrow{O R} \\
& =-\binom{-1}{3}+\binom{8}{9} \\
& =\binom{9}{6}
\end{aligned}
$$

is of the form $\binom{x}{y}$ where $x=9$ and $y=6$.
(ii) Required To Prove: $\overrightarrow{O P}$ is parallel to $\overrightarrow{Q R}$.

Proof:

$$
\begin{aligned}
& \overrightarrow{O P}=\binom{3}{2} \\
& \overrightarrow{Q R}=\binom{9}{6} \\
& =3\binom{3}{2}
\end{aligned}
$$

$\overrightarrow{Q R}$ is a scalar multiple (3) of $\overrightarrow{O P}$, hence $\overrightarrow{O P}$ and $\overrightarrow{Q R}$ are parallel.
(iii) Required To Find: $|\overrightarrow{P R}|$.

Solution:

$$
\begin{aligned}
\overrightarrow{P R} & =\overrightarrow{P O}+\overrightarrow{O R} \\
& =-\binom{3}{2}+\binom{8}{9} \\
& =\binom{5}{7}
\end{aligned}
$$

Magnitude of $\overrightarrow{P R}=|\overrightarrow{P R}|$

$$
\begin{aligned}
& =\sqrt{(5)^{2}+(7)^{2}} \\
& =\sqrt{24+49} \\
& =\sqrt{74} \text { units }
\end{aligned}
$$

c. Data: $S=(a, b)$.
(i) Required To Find: $\overrightarrow{Q S}$ in terms of a and b.

Solution:

$$
\begin{aligned}
\overrightarrow{O S} & =\binom{a}{b} \\
\overrightarrow{Q S} & =\overrightarrow{Q O}+\overrightarrow{O S} \\
& =-\binom{-1}{3}+\binom{a}{b} \\
& =\binom{a+1}{b+3}
\end{aligned}
$$

in terms of a and b.
(ii) Data: $\overrightarrow{Q S}=\overrightarrow{O P}$

Required To Calculate: a and b.
Calculation:
If

$$
\overrightarrow{Q S}=\overrightarrow{O P} \text {, then }
$$

$\binom{a+1}{b+3}=\binom{3}{2}$
Equating components.

$$
\begin{aligned}
a+1 & =3 \\
a & =2 \\
\text { and } & \\
b+3 & =2 \\
b & =5
\end{aligned}
$$

(iii) Required To Prove: $O P S Q$ is a parallelogram. Proof:

If $\overrightarrow{Q S}=\overrightarrow{O P}$ then $|\overrightarrow{Q S}|=|\overrightarrow{O P}|$ and $\overrightarrow{Q S}$ is parallel to $\overrightarrow{O P}$. If one pair of opposite sides of a quadrilateral is both parallel and equal, then the quadrilateral is a parallelogram. Therefore, $O P S Q$ is a parallelogram.
14. a. Data: $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right)$.

Required To Calculate: $3 A B$.
Calculation:

$$
\begin{aligned}
A_{2 \times 2} \times B_{2 \times 2} & =\left(\begin{array}{ll}
e_{11} & e_{12} \\
e_{21} & e_{22}
\end{array}\right) \\
e_{11} & =(1 \times 1)+(2 \times 2) \\
& =5 \\
e_{12} & =(1 \times 3)+(2 \times 5) \\
& =13 \\
e_{21} & =(2 \times 1)+(1 \times 2) \\
& =4 \\
e_{22} & =(2 \times 3)+(1 \times 5) \\
& =11 \\
A B & =\left(\begin{array}{ll}
5 & 13 \\
4 & 11
\end{array}\right) \\
3 A B & =3\left(\begin{array}{ll}
5 & 13 \\
4 & 11
\end{array}\right) \\
& =\left(\begin{array}{ll}
15 & 39 \\
12 & 33
\end{array}\right)
\end{aligned}
$$

b. Data:

and matrices $V=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ and $W=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$
(i) Required To State: Effect of V on $\triangle A B C$.

Solution:
$\triangle A B C \xrightarrow{V}$?
The image of $\triangle A B C$ under V is an enlargement, centre O and scale factor 2.
(ii) Required To Find: 2×2 matrix that represents the combined transformation of V followed by W.

Solution:

The combined transformation V followed by W is expressed as $W V$.

$$
\begin{aligned}
W V & =\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
& =\left(\begin{array}{rr}
(-1 \times 2)+(0 \times 0) & (-1 \times 0)+(0 \times 2) \\
(0 \times 2)+(1 \times 0) & (0 \times 0)+(1 \times 2)
\end{array}\right) \\
& =\left(\begin{array}{rr}
-2 & 0 \\
0 & 2
\end{array}\right)
\end{aligned}
$$

(iii) Required To Find: Coordinates of the image of $\triangle A B C$ under the combined transformation.

Solution:

The image of $\triangle A B C$ under $W V$
$\left(\begin{array}{rr}-2 & 0 \\ 0 & 2\end{array}\right)\left(\begin{array}{lll}1 & 1 & 2 \\ 2 & 1 & 1\end{array}\right)=\left(\begin{array}{rrr}-2 & -2 & -4 \\ 4 & 2 & 2\end{array}\right)$
A is mapped onto $(-2,4)$.
B is mapped onto $(-2,2)$.
C is mapped onto $(-4,2)$.
c. Data: $11 x+6 y=6$ and $9 x+5 y=7$.
(i) Required To Express: The two equations in the form $A X=B$.

Solution:
$11 x+6 y=6$
$9 x+5 y=7$
may be expressed as $\left(\begin{array}{rr}11 & 6 \\ 9 & 5\end{array}\right)\binom{x}{y}=\binom{6}{7}$ is of the form $A X=B$, where

$$
A=\left(\begin{array}{cc}
11 & 6 \\
9 & 5
\end{array}\right), X=\binom{x}{y} \text { and } B=\binom{6}{7}
$$

(ii) Required To Calculate: x and y.

Calculation:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
11 & 6 \\
9 & 5
\end{array}\right) \\
& \operatorname{det} A=(11 \times 5)-(6 \times 9) \\
&=55-54 \\
&=1 \\
& A^{-1}=\frac{1}{1}\left(\begin{array}{rr}
5 & -(6) \\
-(9) & 11
\end{array}\right) \\
&=\left(\begin{array}{rr}
5 & -6 \\
-9 & 11
\end{array}\right) \\
& A X=B \\
& \times A^{-1} \\
& A \times A^{-1} \times X=A^{-1} \times B \\
& I \times X=A^{-1} B \\
&\binom{x}{y}=\left(\begin{array}{rr}
5 & -6 \\
-9 & 11
\end{array}\right)\binom{6}{7} \\
&=\binom{(5 \times 6)+(-6 \times 7)}{(-9 \times 6)+(11 \times 7)} \\
&=\binom{-12}{23}
\end{aligned}
$$

Equating corresponding entries.
$x=-12$ and $y=23$.

