

JANUARY 2009 CXC MATHEMATICS GENERAL PROFICIENCY (PAPER 2)

Section I

1. a.	Required To Calculate: $\frac{3\frac{3}{4}}{2\frac{1}{3} - \frac{5}{6}}$
	Calculation:
	Denominator:
	$2\frac{1}{3} - \frac{5}{6}$
	$2\frac{2-5}{6} = 1\frac{8-5}{6}$
	$=1\frac{1}{2}$
	and
	$\frac{3\frac{3}{4}}{1\frac{1}{2}} = \frac{\frac{15}{4}}{\frac{3}{2}}$
	$1\frac{1}{2} - \frac{3}{2}$
	$=\frac{15}{4}\times\frac{2}{3}$
	$=\frac{15}{4} \times \frac{2}{3}$ $=\frac{5}{2}$
	$=2\frac{1}{2}$

Required To Calculate: Value of one BDS\$ in EC\$ b. (i) Calculation: BDS2\,000 = EC$2\,700$ BDS1 = EC$\frac{2\,700}{2\,000}$

$$= EC$$
\$1.35

- (ii) Required To Calculate: Amount of BDS\$ received for exchanging EC\$432.00 Calculation: EC\$1.35 = BDS\$1.00 EC\$1.00 = BDS\$ $\frac{1.00}{1.35}$ EC\$432 = BDS\$ $\frac{1.00}{1.35} \times 432$ = BDS\$320
- c. Data: Principal \$24 000 receives 8% per annum compound interest. Required To Calculate: Amount of money after 2 years. Calculation:

Interest at the end of 1st year $=\frac{8}{100} \times 24\,000$ = \$1920

Principal at start of second year = \$24000 + \$1920 = \$25920

Interest at the end of 2^{nd} year $=\frac{8}{100} \times 25920$ = \$2073.60

Hence, total amount of money in the account at the end of 2 years = \$25920 + \$2073.60

= \$27993.60

OR

$$A = P \left(1 + \frac{R}{100} \right)^n$$
$$A = 24\,000 \left(1 + \frac{8}{100} \right)^2$$
$$= 24\,000 (1.08)^2$$
$$= \$27\,993.60$$

2. a. **Required To Simplify:** $\frac{2m}{n} - \frac{5m}{3n}$

Solution: $\frac{\frac{2m}{n} - \frac{5m}{3n}}{\frac{3(2m) - 5m}{3n}} = \frac{6m - 5m}{3n}$ $= \frac{m}{3n} \text{ as a single fraction}$

b. Data: $a * b = a^2 - b$ Required To Calculate: 5 * 2Calculation: $5 * 2 = (5)^2 - 2$ = 25 - 2= 23

(i)

- c. Required To Factorise: $3x 6y + x^2 2xy$ Solution: $3x - 6y + x^2 - 2xy = 3(x - 2y) + x(x - 2y)$ = (x - 2y)(3 + x)
- d. **Data:** A 21 cm drinking straw cut into 3 pieces of varying length.
 - **Required To Find:** Length of each piece in terms of x. **Solution:** Length of 1st piece = x cm (data) Length of 2nd piece = (x - 3)cm (data) Length of 3rd piece = $2 \times x$ = 2x cm (data)
 - (ii) **Required To Find:** Expression in terms of *x* to represent the sum of the lengths of all three pieces.

Solution: Sum of the lengths of all three pieces of straw = x + (x - 3) + 2x= x + x + 2x - 3

$$=(4x-3)$$
 cm

(iii) **Required To Calculate:** *x*

Calculation:

$$4x - 3 = 21$$

$$4x = 21 + 3$$

$$4x = 24$$

$$x = \frac{24}{4}$$

$$= 6$$

- 3. a. **Data:** School of 90 form 5 students where 54 study P.E., 42 Music, *x* both and 6 neither.
 - (i)-(ii) **Required To Complete:** Venn diagram to represent the information given. **Solution:**

(iii) Required To Calculate: x Calculation: (54 - x) + x + (42 - x) = 90102 - x = 90x = 102 - 90= 12

b. **Data:** Diagram as shown below.

(i) Required To Calculate: Length of *MK*. Calculation: $\frac{MK}{10} = \sin 30^{\circ}$ $MK = 10 \sin 30^{\circ}$ = 5 m

(ii) **Required To Calculate:** Length of *JK*. **Calculation:**

 $JM = \sqrt{(13)^2 - (5)^2}$ (Pythagoras' Theorem) = $\sqrt{144}$ = 12 m

Length of JK = Length of JM – Length of KM= 12 - 5= 7 m

4. **Data:** Diagram with straight line cutting the axes at *P* and *Q*.

a. **Required To State:** Coordinates of *P* and *Q*. **Solution:**

Line cuts the y – axis at 3, $\therefore P = (0, 3)$. Line cuts the x – axis at – 2, $\therefore Q = (-2, 0)$.

b. (i) **Required To Find:** Gradient of *PQ*. **Solution:**

Gradient of
$$PQ = \frac{3-0}{0-(-2)}$$
$$= \frac{3}{2}$$

(ii) **Required To Find:** Equation of *PQ*. **Solution:**

Equation of PQ is $\frac{y-3}{x-0} = \frac{3}{2}$ Using point at P 2y-6 = 3x 2y = 3x + 6 $= y = \frac{3}{2}x + 3$

OR

$$\frac{y-0}{x-(-2)} = \frac{3}{2}$$
 Using point at Q
$$2y = 3x + 6$$

OR

y = mx + c is the general equation of a straight line where gradient, $m = \frac{3}{2}$ and intercept on the vertical axis is 3.

rs.on

 $\therefore y = \frac{3}{2}x + 3$

c. **Data:** Point (-8, t) lies on PQ. **Required To Calculate:** t **Calculation:**

Equation of PQ is $y = \frac{3}{2}x + 3$.

$$t = \frac{3}{2}(-8) + 3$$

$$t = -12 = 3$$

$$= -9$$

(d) Data: AB is perpendicular to PQ and passes through (6, 2).
 Required To Find: Equation of AB.
 Solution:

Gradient of
$$PQ = \frac{3}{2}$$
, then gradient of $AB = -\frac{2}{3}$.
(Product of the gradients of perpendicular lines = -1).
Equation of AB is
 $\frac{y-2}{x-6} = -\frac{2}{3}$
 $3(y-2) = -2(x-6)$
 $3y-6 = -2x+2$
 $3y = -2x+12$
 $3y = -2x+18$
 $\div 3$
 $y = -\frac{2}{3}x+6$
is of the form $y = mx + c$, where $m = -\frac{2}{3}$ and $c = 6$

is of the form y = mx + c, where $m = -\frac{2}{3}$ and c = 6.

5. Data:

2

- a. **Required To Calculate:** Volume of large cereal box. **Calculation:** Volume = $(25 \times 8 \times 36)$ = 7 200 cm³
- b. **Required To Calculate:** Total surface area of large cereal box. **Calculation:**

Area of front and back faces $= 2(25 \times 36) \text{ cm}^2$ Area of left and right faces $= 2(8 \times 36) \text{ cm}^2$ Area of base and top faces $= 2(25 \times 8) \text{ cm}^2$

Total area of large cereal box = $2(25 \times 36) + 2(8 \times 36) + 2(25 \times 8)$ = 1800 + 576 + 400= 2776 cm^2

- c. **Data:** One large box can fill six small boxes each of equal volume.
 - (i) **Required To Calculate:** Volume of one small cereal box. **Calculation:** Volume of large cereal box = $6 \times$ Volume of small cereal box 7200

Volume of small cereal box = $\frac{7200}{6}$ = 1200 cm³

(ii) **Required To List:** Two different pairs of values which the company can use for the height and width of a small box. Solution:

In a small cereal box, let length = l cm and width = w cm.

 $l \times w \times 20 = 1200$

 $l \times w = 60$

There are an infinite number of possible choices for values of l and w such that $l \times w = 60$.

For simplicity, we may choose two integral values, such as

Let l = 10 and w = 6 and l = 12 and w = 5 as the two pairs of values.

6. a. **Required To Construct:** Rectangle PQRS with PQ = 7.0 cm and QR = 5.5 cm. **Solution:**

- b. **Data:** $\Delta L \longrightarrow \Delta M$
 - (i) **Required To Calculate:** Translation vector that maps ΔL onto ΔM . **Calculation:**

L is mapped onto M by a horizontal shift of 4 units to the right and 4 units vertically upwards. This may be represented by the translation vector, T, where

$$T = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
.

(b)

- (ii) **Data:** $\Delta L \longrightarrow \Delta N$, by an enlargement, say *E*.
 - (a) **Required To Find:** Centre of enlargement, *G* on diagram. **Solution:**

Required To State: Coordinates of *G*. **Solution:**

G is (-5, 0), as seen on the diagram.

(c) **Required To Calculate:** Scale factor of the enlargement. **Calculation:**

Measuring the image length and its corresponding object length.

 $\frac{\text{Image Length}}{\text{Object Length}} = \frac{6}{3}$ = 2

Therefore, scale factor of the enlargement is 2.

- 7. Data: Given table of values for marks in a test obtained by 70 students.
 - a. **Required To Complete:** Table to show cumulative frequency distribution. **Solution:**

Modifying the table. Distribution – discrete variable.

Marks L.C.B U.C.B.	Frequency. f	Cumulative frequency (C.F.)	Points to be plotted (U.C.B, C.F.)	
			(0, 0)	
1 - 10	2	2	(10, 2)	
11 - 20	5	7	(20, 7)	
21 - 30	9	16	(30, 16)	
31 - 40	14	14 + 16 = 30	(40, 30)	
41 - 50	16	16 + 30 = 46	(50, 46)	
51 - 60	12	12 + 46 = 58	(60, 58)	
61 - 70	8	8+58=66	(70, 66)	
71 - 80	4	4 + 66 = 70	(80, 70)	

A cumulative frequency curve must start from the horizontal axis. By checking the values of U.C.B., we find that an initial point with U.C.B = 0 and C.F. = 0.

b. (i) **Required To Draw:** Cumulative frequency curve for the information given.

Solutio

(ii) **Required To State:** Assumption made when drawing the curve through the point (0, 0).

Solution:

In drawing the curve with a starting point at (0, 0), we are assuming that no student obtained a mark of 0. This also seems clear from the table of values that is given.

c. **Required To Find:** Number of students who passed the test. **Solution:**

If the pass mark is 47 (which corresponds to a cumulative frequency value of 41), then the number of students who passed the test is 70 - 41 = 29.

d. **Required To Calculate:** Probability randomly chosen student had a mark less than or equal to 30.

Calculation:

 $P(\text{Student obtained a mark} \le 30) = \frac{\text{No. of students who obtained a mark} \le 30}{\text{Total no. of students}} = \sum_{i=1}^{n} f_{i}$

$$=\frac{10}{70}$$
$$=\frac{8}{35}$$

- 8. **Data:** Pattern made up of lines and dots.
 - a. **Required To Draw:** Fourth diagram in the sequence. **Solution:**

The fourth diagram in the sequence is

b. Required To Complete: Table given. Solution:

No. of dots, d	Pattern connecting <i>l</i> and <i>d</i>	No. of line segments, <i>l</i>	
5	$2 \times 5 - 4$	6	
8	$2 \times 8 - 4$	12	
11	2×11-4	18	
: 67		•	
(i) 62	$2 \times 62 - 4$	120	
	:	•	
(ii) 92	$2 \times 92 - 4$	180	

c.

(i) **Required To Find:** No. of dots in the 6th diagram of the sequence. **Solution:**

The sequence of dots d is

d =5 1st 5+3=8 2nd 8+3=11 3rd 11+3=14 4th 14+3=17 5th 17+3=20 6th ∴ In the 6th diagram of the sequence, the number of dots, d = 20.

(ii) Required To Find: Number of line segments in the 7th diagram of the sequence.
 Solution:

In the 7th diagram d =

$$\begin{array}{ll} 20 & 6^{th} \\ 3+20=23 & 7^{th} \end{array}$$

$$\therefore$$
 No. of line segments = $2 \times 23 - 4$

= 42

(iii) **Required To Find:** The rule which relates *l* to *d*. **Solution:**

By observing the pattern values of d and l

	2 is constant ×value of	
	d - constant = 4	
5	$2 \times 5 - 4$	
8	$2 \times 8 - 4$	
11	$2 \times 11 - 4$	
62	$2 \times 62 - 4$	
92	$2 \times 92 - 4$	

$$l = 2 \times d - 4$$
$$l = 2d - 4$$

9. a.

Data: $\frac{p}{2} = \sqrt{\frac{t+r}{g}}$

Required To Make: *t* the subject of the formula. **Solution:**

$$\frac{p}{2} = \sqrt{\frac{t+r}{g}}$$

Squaring to remove $\sqrt{}$

$$\left(\frac{p}{2}\right)^2 = \left(\sqrt{\frac{t+r}{g}}\right)^2$$
$$\frac{p^2}{4} = \frac{t+r}{g}$$
$$g \times p^2 = 4(t+r)$$

$$gp^{2} = 4t + 4r$$

$$gp^{2} - 4r = 4t$$

$$4t = gp^{2} - 4r$$

$$t = \frac{gp^{2} - 4r}{4} \text{ or } \frac{gp^{2}}{4} - r$$

Data: $f(x) = 2x^2 - 4x - 13$ b.

Required To Express: f(x) in the form $f(x) = a(x+h)^2 + k$. (i) Solution:

$$f(x) = 2x^{2} - 4x - 13$$
$$= 2(x^{2} - 2x) - 13$$

 $= 2(x^{2} - 2x) - 15$ Half the coefficient of $-2x = \frac{1}{2}(-2)$ = -1 $f(x) = 2(x-1)^{2} + *$

$$f(x) = 2(x-1)^{2} + *$$

2(x² - 2x + 1) = 2x² - 4x + 2
$$\frac{-15}{-13} = *$$

Hence, $f(x) = 2x^2 - 4x - 13 \equiv 2(x-1)^2 - 15$ is of the form $a(x+h)^2 + k$, where a = 2, h = -1 and k = -15.

OR

$$2x^{2} - 4x - 13 = a(x + h)^{2} + k$$

$$= a(x^{2} + 2hx + h^{2}) + k$$

$$= ax^{2} + 2ahx + ah^{2} + k$$

Equating coefficient of x^{2} .
 $a = 2$
Equating coefficient of x.
 $-4 = 2(2)h$
 $h = -1$
Equating constants.
 $2(-1)^{2} + k = -13$
 $k = -15$
 $\therefore 2x^{2} - 4x - 13 = 2(x - 1)^{2} - 15$, where a, h and k are already given

(ii) **Required To Find:** Values of x at which f(x) cuts the x – axis **Solution:**

Assuming the graph is $f(x) = 2x^2 - 4x - 13$, f(x) cuts the x - axis at f(x) = 0.

$$2x^2 - 4x - 13 = 0$$

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(2)(-13)}}{2(2)}$$

= $\frac{4 \pm \sqrt{16 + 104}}{4}$
= $\frac{4 \pm \sqrt{16 + 104}}{4}$
= $\frac{4 \pm \sqrt{120}}{4}$
= $\frac{4 \pm \sqrt{4 \times 30}}{4}$
= $\frac{4 \pm 2\sqrt{30}}{4}$
= $1 \pm \frac{\sqrt{30}}{2}$
 $\therefore f(x)$ cuts the x - axis at $x = 1 + \frac{\sqrt{30}}{2}$ and $1 - \frac{\sqrt{30}}{2}$.

(iii) **Required To Find:** Interval for which $f(x) \le 0$. Solution:

 $f(x) = 2x^2 - 4x - 13$. Coefficient of $x^2 > 0$, therefore f(x) is a parabola in shape with a minimum point.

Required To Find: Minimum value of f(x). (iv)

Solution:

...

$$f(x) = 2x^{2} - 4x - 13$$
$$= 2(x - 1)^{2} - 15$$
$$2(x - 1)^{2} \ge 0 \quad \forall x$$
$$\therefore f(x)_{\min} = 0 - 15$$
$$= -15$$

OR

$$f(x) = 2x^{2} - 4x - 13$$

The axis of symmetry of $f(x)$ is $x = \frac{-(-4)}{2(2)}$

The axis of symmetry passes through the minimum point and hence x = 1at the minimum point.

$$f(1) = 2(1)^2 - 4(1) - 13$$

= -15
∴ $f(x)_{\min} = -15$

The x coordinates of the minimum point is half way between the x value

and which
$$f(x)$$
 cuts the $x - axis = \frac{1 + \frac{\sqrt{30}}{2} + 1 - \frac{\sqrt{30}}{2}}{2}$
$$= \frac{2}{2}$$
$$= 1$$
$$f(1) = -15$$
$$\therefore f(x)_{\min} = -15$$

(v) Required To Find: x at which
$$f(x)$$
 is minimum.
Solution:
 $f(x) = 2(x-1)^2 - 15$
 $f(x)_{mn} = -15$ at $2(x-1)^2 = 0$
That is, $(x-1)^2 = 0$ and $x = 1$.
a. Data: $f: x \to x-3$ and $g: x \to x^2 - 1$.
(i) Required To Calculate: $f(6)$.
Calculation:
 $f(6) = 6 - 3$
 $= 3$
(ii) Required To Calculate: $f^{-1}(x)$.
Calculation:
Let
 $y = x - 3$
 $y + 3 = x$
 $x = y + 3$
Replace y by x
 $f^{-1}: x \to x + 3$
(iii) Required To Prove: $fg(2) = fg(-2) = 0$.
Proof:
 $g(2) = (2)^2 - 1$
 $= 4 - 1$
 $= 3$
 $fg(2) = f(3)$
 $= 3 - 3$
 $= 0$
 $g(-2) = (-2)^2 - 1$
 $= 4 - 1$
 $= 3$
 $fg(-2) = f(3)$
 $= 3 - 3$
 $= 0$
 $fg(2) = f(3)$
 $= 3 - 3$
 $= 0$
 $fg(2) = f(3)$
 $= 3 - 3$
 $= 0$
 $fg(2) = f(3)$
 $= 3 - 3$
 $= 0$
 $fg(2) = f(3)$
 $= 3 - 3$
 $= 0$
 $fg(2) = f(3)$
 $= 3 - 3$
 $= 0$
 $fg(2) = f(3)$
 $= 3 - 3$
 $= 0$
 $fg(2) = f(3)$
 $= 3 - 3$
 $= 0$
 $fg(2) = f(3)$
 $= 3 - 3$
 $= 0$
 $fg(2) = f(2) = 0$
Q.E.D.

10.

Page 18 of 30

- b. **Data:** A distance time graph for a train travelling between stations A and B.
 - (i) **Required To Find:** Time during with train was a rest. **Solution:**

(ii) **Required To Find:** Average speed of the train from A to B. **Solution:**

(iii)

Required To Find: Time taken for the train to travel from B to C. **Solution:**

Time taken from B to C = $\frac{\text{Distance from B to C}}{\text{Average speed from B to C}}$ = $\frac{50 \text{ km}}{60 \text{ km}\overline{h}^{-1}}$ = $\frac{5}{6}$ hour = 50 minutes

(iv) Required To Draw: Line segment which describes the journey from B to C.Solution:

11. a. **Data:** Table of values for
$$y = \frac{1}{2} \tan x$$
.

(i) **Required To Complete:** Table of values given. **Solution:**

x	10°	20°	30°	40°	50°	60°°
у	0.09	0.18	0.29	0.42	0.60	0.87

Note: When $x = 10^{\circ}$, y = 0.09 which was erroneously given as 0.13 in the exam paper. This value has been altered.

(ii) **Required To Draw:** Graph of
$$y = \frac{1}{2} \tan x$$
.

Solution:

Required To Calculate: $O\hat{A}E$ **Calculation:** $O\hat{A}E = 90^{\circ}$

(i)

(The angle made by a tangent to a circle and a radius, at the point of contact = 90°). Similarly for $O\hat{B}E$.

(ii) **Required To Calculate:** $A\hat{OB}$ **Calculation:**

 $A\hat{O}B = 360^{\circ} - (90^{\circ} + 90^{\circ} + 48^{\circ})$ $= 132^{\circ}$

(The sum of the angles in a quadrilateral $= 360^{\circ}$).

(iii) **Required To Calculate:** $A\hat{C}B$ **Calculation:**

A chord *AB* subtends twice the angle at the centre of a circle, that it subtends at the circumference, standing on the same arc.

$$\therefore A\hat{C}B = \frac{1}{2}(132^\circ)$$
$$= 66^\circ$$

(iv) **Required To Calculate:** $A\hat{D}B$ **Calculation:**

$$\hat{ADB} = 180^\circ - 66^\circ$$

(The opposite angles of cyclic quadrilateral are supplementary).

12. a. **Data:** Diagram as shown below.

- = 9.16<u>5</u>
- $= 9.17 \,\mathrm{m}$ (to 2 decimal places)

(ii) Required To Calculate: $U\hat{V}W$ Calculation:

 $\frac{9.165}{\sin U \hat{V} W} = \frac{11}{\sin 40^{\circ}}$ $\sin U \hat{V} W = \frac{9.165 \sin 40^{\circ}}{11}$ = 0.535 $U \hat{V} W = \sin^{-1}(0.535)$ $= 32.34^{\circ}$ $= 32.3^{\circ} \text{ (to the nearest } 0.1^{\circ})$

(iii) Required To Calculate: Area of ΔTUW Calculation:

> Area = $\frac{1}{2}$ (8 x 10) sin 60⁰ =34.64 cm²

b.NO SOLUTION HAS BEEN OFFERED AS THIS PART OF THE QUESTION IS ON EARTH GEOMETRY WHICH HAS BEEN REMOVED FROM THE COURSE.

13. Data: Diagram showing vectors \overrightarrow{OP} and \overrightarrow{OQ} .

Solution:

a.

P is the point (3, 2), as seen on the diagram.

$$\overrightarrow{OP} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 is of the form $\begin{pmatrix} x \\ y \end{pmatrix}$ where $x = 3$ and $y = 2$.

(ii) **Required To Express:**
$$\overrightarrow{OQ}$$
 in the form $\begin{pmatrix} x \\ y \end{pmatrix}$.

Solution:

Q is the point (-1, 3) as seen on the diagram.

$$\overrightarrow{OQ} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$
 is of the form $\begin{pmatrix} x \\ y \end{pmatrix}$ where $x = -1$ and $y = 3$.

- b. **Data:** *R* has coordinates (8, 9).
 - (i) **Required To Express:** \overrightarrow{QR} in the form $\begin{pmatrix} x \\ y \end{pmatrix}$.

Solution:

$$R \text{ is } (8, 9).$$

 $\overrightarrow{OR} = \begin{pmatrix} 8\\ 9 \end{pmatrix}$
 $\overrightarrow{QR} = \overrightarrow{QO} + \overrightarrow{OR}$
 $= -\begin{pmatrix} -1\\ 3 \end{pmatrix} + \begin{pmatrix} 8\\ 9 \end{pmatrix}$
 $= \begin{pmatrix} 9\\ 6 \end{pmatrix}$
is of the form $\begin{pmatrix} x\\ y \end{pmatrix}$ where $x = 9$ and $y = 6$.

(ii) **Required To Prove:** \overrightarrow{OP} is parallel to \overrightarrow{QR} . **Proof:** cor,

 \overrightarrow{QR} is a scalar multiple (3) of \overrightarrow{OP} , hence \overrightarrow{OP} and \overrightarrow{QR} are parallel.

(iii) **Required To Find:** $|\overrightarrow{PR}|$.

Solution:

$$\overrightarrow{PR} = \overrightarrow{PO} + \overrightarrow{OR}$$

 $= -\binom{3}{2} + \binom{8}{9}$
 $= \binom{5}{7}$
Magnitude of $\overrightarrow{PR} = |\overrightarrow{PR}|$
 $= \sqrt{(5)^2 + (7)^2}$
 $= \sqrt{24 + 49}$
 $= \sqrt{74}$ units

- **Data:** S = (a, b). c.
 - **Required To Find:** \overrightarrow{QS} in terms of *a* and *b*. (i) Solution:

$$\overrightarrow{OS} = \begin{pmatrix} a \\ b \end{pmatrix}$$
$$\overrightarrow{QS} = \overrightarrow{QO} + \overrightarrow{OS}$$
$$= -\begin{pmatrix} -1 \\ 3 \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$$
$$= \begin{pmatrix} a+1 \\ b+3 \end{pmatrix}$$

in terms of *a* and *b*.

(i)
$$(b)$$

$$= \begin{pmatrix} a+1\\ b+3 \end{pmatrix}$$
in terms of *a* and *b*.
(ii) **Data:** $\overrightarrow{QS} = \overrightarrow{OP}$
Required To Calculate: *a* and *b*.
Calculation:
If
 $\overrightarrow{QS} = \overrightarrow{OP}$, then
 $\begin{pmatrix} a+1\\ b+3 \end{pmatrix} = \begin{pmatrix} 3\\ 2 \end{pmatrix}$
Equating components.
 $a+1=3$
 $a=2$
and
 $b+3=2$
 $b=5$

Required To Prove: *OPSQ* is a parallelogram. (iii)

14. a.

Data: $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$.

Required To Calculate: 3AB. **Calculation:**

$$A_{2 \times 2} \times B_{2 \times 2} = \begin{pmatrix} e_{11} & e_{12} \\ e_{21} & e_{22} \end{pmatrix}$$
$$e_{11} = (1 \times 1) + (2 \times 2)$$
$$= 5$$
$$e_{12} = (1 \times 3) + (2 \times 5)$$
$$= 13$$
$$e_{21} = (2 \times 1) + (1 \times 2)$$
$$= 4$$
$$e_{22} = (2 \times 3) + (1 \times 5)$$
$$= 11$$
$$AB = \begin{pmatrix} 5 & 13 \\ 4 & 11 \end{pmatrix}$$
$$3AB = 3 \begin{pmatrix} 5 & 13 \\ 4 & 11 \end{pmatrix}$$
$$= \begin{pmatrix} 15 & 39 \\ 12 & 33 \end{pmatrix}$$

b. Data:

(i) **Required To State:** Effect of V on $\triangle ABC$. Solution: $\triangle ABC \xrightarrow{V} ?$

The image of $\triangle ABC$ under V is an enlargement, centre O and scale factor 2.

the con

(ii) **Required To Find:** 2×2 matrix that represents the combined transformation of *V* followed by *W*.

Solution:

The combined transformation V followed by W is expressed as WV.

$$WV = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} (-1 \times 2) + (0 \times 0) & (-1 \times 0) + (0 \times 2) \\ (0 \times 2) + (1 \times 0) & (0 \times 0) + (1 \times 2) \end{pmatrix}$$
$$= \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$$

(iii) **Required To Find:** Coordinates of the image of $\triangle ABC$ under the combined transformation.

Solution:

The image of $\triangle ABC$ under WV $\begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -2 & -2 & -4 \\ 4 & 2 & 2 \end{pmatrix}$ *A* is mapped onto (-2, 4). *B* is mapped onto (-2, 2). *C* is mapped onto (-4, 2).

c. **Data:**
$$11x + 6y = 6$$
 and $9x + 5y = 7$.

(i) **Required To Express:** The two equations in the form AX = B. Solution: 11x + 6y = 6

9x + 5y = 7

may be expressed as $\begin{pmatrix} 11 & 6\\ 9 & 5 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 6\\ 7 \end{pmatrix}$ is of the form AX = B, where $A = \begin{pmatrix} 11 & 6\\ 9 & 5 \end{pmatrix}$, $X = \begin{pmatrix} x\\ y \end{pmatrix}$ and $B = \begin{pmatrix} 6\\ 7 \end{pmatrix}$.

i) **Required To Calculate:** *x* and *y*. **Calculation:**

$$A = \begin{pmatrix} 11 & 6 \\ 9 & 5 \end{pmatrix}$$

det $A = (11 \times 5) - (6 \times 9)$
 $= 55 - 54$
 $= 1$
 $A^{-1} = \frac{1}{1} \begin{pmatrix} 5 & -(6) \\ -(9) & 11 \end{pmatrix}$
 $= \begin{pmatrix} 5 & -6 \\ -9 & 11 \end{pmatrix}$
 $AX = B$

 $\times A^{-1}$

$$A^{-1} = \frac{1}{1} \begin{pmatrix} 5 & -(6) \\ -(9) & 11 \end{pmatrix}$$

= $\begin{pmatrix} 5 & -6 \\ -9 & 11 \end{pmatrix}$
 $AX = B$
× A^{-1}
 $A \times A^{-1} \times X = A^{-1} \times B$
 $I \times X = A^{-1}B$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 & -6 \\ -9 & 11 \end{pmatrix} \begin{pmatrix} 6 \\ 7 \end{pmatrix}$
 $= \begin{pmatrix} (5 \times 6) + (-6 \times 7) \\ (-9 \times 6) + (11 \times 7) \end{pmatrix}$
 $= \begin{pmatrix} -12 \\ 23 \end{pmatrix}$

Equating corresponding entries. \therefore and y = 2: x = -12 and y = 23.