CXC JUNE 2008 MATHEMATICS GENERAL PROFICIENCY (PAPER 2) (REST OF THE CARIBBEAN BESIDES TRINIDAD \& TOBAGO)

Section I

1. a. (i) Required To Calculate: $(3.9 \times 0.27)+\sqrt{0.6724}$

Calculation:

$$
\begin{aligned}
(3.9 \times 0.27)+\sqrt{0.6724} & =1.053+0.82 \quad(\text { by use of calculator }) \\
= & 1.873(\text { in exact form })
\end{aligned}
$$

(ii)

Required To Calculate: $\frac{2 \frac{1}{2}-\frac{4}{5}}{\frac{3}{4}}$

Calculation:

Numerator:

$$
\begin{aligned}
2 \frac{1}{2}-\frac{4}{5} & =\frac{5}{2}-\frac{4}{5} \\
& =\frac{25-8}{10} \\
& =\frac{17}{10}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{2 \frac{1}{2}-\frac{4}{5}}{\frac{3}{4}} & =\frac{\frac{17}{10}}{\frac{3}{4}} \\
& =\frac{17}{10} \times \frac{4}{3} \\
& =\frac{34}{15}(\text { as a single fraction in its lowest terms })
\end{aligned}
$$

b. (i) Data: CAN $\$ 1.00 \equiv$ JA $\$ 72.50$

Required To Calculate: CAN\$250 in JA\$.
Calculation:
Cost of camera $=$ CAN $\$ 250$
Hence cost of camera in JA\$ $=250 \times 72.50$

$$
=\mathrm{JA} \$ 18125
$$

(ii) Required To Calculate: Remaining money on credit card in CAN\$.

Calculation:
Limit on credit card $=\mathrm{JA} \$ 30000$
Available remainder after buying the camera $=\mathrm{JA} \$(30000-\$ 18125)$
The equivalent in CAN $\$=\frac{30000-18125}{72.50}$
2. a. Data: $a=2, b=-1$ and $c=3$
(i) Required To Calculate: $a(b+c)$

Calculation:

$$
\begin{aligned}
a(b+c) & =2(-1+3) \\
& =2(2) \\
& =4
\end{aligned}
$$

(ii) Required To Calculate: $\frac{4 b^{2}-2 a c}{a+b+c}$

Calculation:

$$
\begin{aligned}
\frac{4 b^{2}-2 a c}{a+b+c} & =\frac{4(-1)^{2}-2(2)(3)}{2+(-1)+3} \\
& =\frac{4(1)-12}{4} \\
& =\frac{-8}{4} \\
& =-2
\end{aligned}
$$

b. (i) Required To Find: Algebraic expression for the statement given. Solution:
Four times the sum of x and 5 .

$$
\begin{aligned}
& 4 \times \\
= & 4(x+5)
\end{aligned}
$$

(ii) Required To Find: Algebraic expression for the statement given. Solution:
16 larger than the product of a and b.
$16+$
$(a \times b=a b)$
$=16+a b$
c. Data: $15-4 x=2(3 x+1)$

Required To Calculate: x
Calculation:

$$
\begin{aligned}
15-4 x & =2(3 x+1) \\
15-4 x & =6 x+2 \\
15-2 & =6 x+4 x \\
10 x & =13 \\
x & =\frac{13}{10} \\
& =1 \frac{3}{10}
\end{aligned}
$$

d. Required To Factorise: (i) $6 a^{2} b^{3}+12 a^{4} b$, (ii) $2 m^{2}+9 m-5$

Solution:

$$
\begin{align*}
6 a^{2} b^{3}+12 a^{4} b & =\underline{6} \times \underline{a}^{2} \times \underline{b} \times b^{2}+2 \times \underline{6} \times \underline{a}^{2} \times a^{2} \times \underline{b} \tag{i}\\
& =6 a^{2} b\left(b^{2}+2 a^{2}\right) \\
& =6 a^{2} b\left(2 a^{2}+b^{2}\right)
\end{align*}
$$

(ii) $2 m^{2}+9 m-5=(2 m-1)(m+5)$
3. Data: Results of 1080 students' choices in a career guidance seminar.

Career	Lawyer	Teacher	Doctor	Artist	Salesperson
Number of students	240	189	t	216	330

a. Required To Calculate: t

Calculation:

$$
\begin{aligned}
240+189+t+216+330 & =1080 \quad(\text { data }) \\
t & =1080-(240+189+216+330) \\
& =105
\end{aligned}
$$

b. (i) Required To Calculate: Size of the angles of the sectors in the pie chart. Calculation:

Sector illustrating	Angle of sector
Lawyer	$\frac{240}{1080} \times 360^{\circ}=80^{\circ}$
Teacher	$\frac{189}{1080} \times 360^{\circ}=63^{\circ}$
Doctor	$\frac{105}{1080} \times 360^{\circ}=35^{\circ}$
Artist	$\frac{216}{1080} \times 360^{\circ}=72^{\circ}$
Salesperson	$\frac{330}{1080} \times 360^{\circ}=110^{\circ}$

(ii) Required To Draw: Pie chart to represent the information given, using a circle of radius $=4 \mathrm{~cm}$.
Solution:

4. a. Data: Given the universal set U and sets M and N are defined.
(i) Required To Draw: Venn diagram for the information given. Solution:

(ii) Required To List: Elements of the set $(M \cup N)^{\prime}$.

Solution:

$$
(M \cup N)^{\prime}=\{15,21,25\} \quad(\text { as illustrated on the Venn diagram })
$$

b. (i) Required To Construct: Parallelogram $A B C D$, in which $A B=A D=7 \mathrm{~cm}$ and $B A D=60^{\circ}$.
Solution:

(ii) Required To Find: Length of diagonal $A C$. Solution:
$A C=12.1 \mathrm{~cm}$ (by measurement).
5. Data: Plan of a floor with given dimensions.

a. (i) Required To Calculate: Length $R S$.

Calculation:

$$
\begin{aligned}
R S+2 & =8 \\
R S & =8-2
\end{aligned} \text { (From diagram) }
$$

Length of $R S=6 \mathrm{~m}$
(ii) Required To Calculate: x Calculation:

$$
\begin{aligned}
x+R S & =10 \mathrm{~m} \quad \text { (From diagram) } \\
x+6 & =10 \\
x & =4 \mathrm{~m}
\end{aligned}
$$

b. Required To Calculate: Perimeter of the entire floor.

Calculation:
Using R as the starting point and checking the total distance of all the edges, to find the perimeter of the floor.
Perimeter $=(4+5+10+5+2+3+8+3) \mathrm{m}$

$$
=40 \mathrm{~m}
$$

c. Required To Calculate: Area of the entire floor.

Calculation:
Area of the entire floor $=$ Area of region A + Area of region B

$$
\begin{aligned}
& =\{(5 \times 10)+(3 \times 8)\} \\
& =50+24 \\
& =74 \mathrm{~m}^{2}
\end{aligned}
$$

d. Data: Part A is to covered with flooring boards measuring 1 m by 20 cm .

Required To Calculate: Number of flooring boards needed to cover A.
Calculation:
Area of 1 flooring board $=1 \mathrm{~m} \times 20 \mathrm{~cm}$

$$
\begin{aligned}
& =1 \mathrm{~m} \times \frac{20}{100} \mathrm{~m} \\
& =\frac{20}{100} \mathrm{~m}^{2} \\
& =\frac{1}{5} \mathrm{~m}^{2}
\end{aligned}
$$

Number of flooring boards needed to cover $\mathrm{A}=\frac{\text { Area of } \mathrm{A}}{\text { Area of } 1 \text { board }}$

$$
=\frac{5 \times 10}{\frac{1}{5}}
$$

$$
=250
$$

No. of boards $=250$
6. a. Data: Diagram showing a vertical pole and H, J and K, points on the horizontal ground.
(i) Required To Complete: Diagram by inserting the angles of elevation. Solution:

(ii) (a) Required To Calculate: Length of $H J$. Calculation:

$$
\begin{aligned}
& \tan 32^{\circ}=\frac{12}{H J} \\
& \begin{aligned}
\therefore H J & =\frac{12}{\tan 32^{\circ}} \\
& =19.2 \underline{\mathrm{~m}} \\
& =19.2 \mathrm{~m} \text { (to1 decimal place })
\end{aligned}
\end{aligned}
$$

(b) Required To Calculate: The length of $J K$. Calculation:

$$
\begin{aligned}
\tan 27^{\circ} & =\frac{12}{H K} \\
\therefore H K & =\frac{12}{\tan 27^{\circ}} \\
& =23.55 \mathrm{~m}
\end{aligned}
$$

Length of $J K=23.55-19.2$

$$
\begin{aligned}
& =4.35 \\
& =4.4 \mathrm{~m} \text { (to } 1 \text { decimal place })
\end{aligned}
$$

b. Data: Diagram on axes illustrating figure P and congruent figure Q.

(i) Required To Describe: The transformation that P undergoes to produce Q.
Solution:

P is mapped onto Q by a horizontal shift of 2 units to the right and a vertical shift of 7 units downwards.
This is a translation, T, where $T=\binom{2}{-7}$.
(ii) (a) Required To Draw: The line $y=x$ on the answer sheet.
(b) Required To Draw: S, the image of P under a reflection in the line $y=x$.

Solution:

P onto S by a reflection in the line $y=x$.

$$
\begin{gathered}
\therefore P \xrightarrow{\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)} S \\
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{llll}
4 & 6 & 7 & 4 \\
4 & 4 & 2 & 2
\end{array}\right)=\left(\begin{array}{llll}
4 & 4 & 2 & 2 \\
4 & 6 & 7 & 4
\end{array}\right)
\end{gathered}
$$

Coordinates Coordinates
of the vertices of the vertices

$$
\text { of } P \quad S
$$

7. Data: Diagram of a straight line cutting the axes at A and B.

a. (i) Required To Calculate: c

Calculation:
From the diagram, the straight line cuts the vertical axis at $A(0,7)$,
Hence, $c=7$.
(ii) Required To Calculate: m Calculation:
From the diagram $B=(2,0)$

$$
\text { Gradient of } \begin{aligned}
A B & =\frac{7-0}{0-2}=m \\
m & =-\frac{7}{2}
\end{aligned}
$$

(iii) Required To Calculate: Midpoint of $A B$.

Calculation:

$$
\text { Midpoint of } \begin{aligned}
A B & =\left(\frac{0+2}{2}, \frac{7+0}{2}\right) \\
& =\left(1,3 \frac{1}{2}\right)
\end{aligned}
$$

b. Data: The point $(-2, k)$ lies on the line.

Required To Calculate: k

Calculation:

Equation of $A B$ is $y=m x+c$, where $m=-3 \frac{1}{2}$ and $c=7$, that is

$$
y=-3 \frac{1}{2} x+7
$$

$(-2, k)$ lies on the graph.

$$
\begin{aligned}
k & =\left(-3 \frac{1}{2}\right)(-2)+7 \\
& =14
\end{aligned}
$$

c. Required To Calculate: Point of intersection of $y=x-2$ and the given line.

Calculation:

To determine the point of intersection of $y=x-2$ and $A B$, we solve the equations simultaneously.
Let

$$
\begin{align*}
& y=-3 \frac{1}{2} x+7 . \tag{1}\\
& y=x-2 \tag{2}
\end{align*}
$$

Equating (1) and (2)

$$
\begin{aligned}
-3 \frac{1}{2} x+7 & =x-2 \\
7+2 & =x+3 \frac{1}{2} x \\
9 & =4 \frac{1}{2} x \\
x & =\frac{9}{4 \frac{1}{2}} \\
& =2
\end{aligned}
$$

When $x=2$

$$
\begin{aligned}
y & =2-2 \\
& =0
\end{aligned}
$$

\therefore The point of intersection of the two lines is $(2,0)$.
8. Data: Annie bought 6 each of four different kind of stamps.
a. Required To Calculate: Total cost of the stamps.

Calculation:
Cost of 6 stamps at $\$ 4.00$ each $=\$ 24.00$
Cost of 6 stamps at $\$ 2.50$ each $=\$ 15.00$
Cost of 6 stamps at $\$ 1.20$ each $=\$ 7.20$
Cost of 6 stamps at $\$ 1.00$ each $=\$ 6.00$

$$
\text { Total }=\$ 52.20
$$

Hence, the total cost of the stamps that Annie bought $=\$ 52.20$
b. Data: Cost of Annie posting a parcel was $\$ 25.70$
(i) Required To Calculate: Stamps that she can select using as many $\$ 4.00$ stamps as possible.

Calculation:

Cost of posting a parcel is $\$ 25.70$
Using
5 stamps at $\$ 4.00$ each $=\$ 20.00$
1 stamp at $\$ 2.50$ each $=\$ 2.50$
1 stamp at $\$ 1.20$ each $=\$ 1.20$
2 stamps at $\$ 1.00$ each $=\$ 2.00$
Total is exactly $=\underline{\$ 25.70}$
(ii) Required To Calculate: Stamps that she can select using all her $\$ 1.00$ stamps.

Calculate:

Using
All 6 stamps at $\$ 1.00$ each $=\$ 6.00$
4 stamps at $\$ 4.00$ each $=\$ 16.00$
1 stamp at $\$ 2.50$ each $=\$ 2.50$
1 stamp at $\$ 1.20$ each $=\$ 1.20$
Total is exactly $=\$ 25.70$
c. (i), (ii) Required To Calculate: The largest number of stamps she can use and list the selection of stamps she can use.

Calculation:

To use the most number of stamps, Annie must use
6 stamps at $\$ 1.00=\$ 6.00$
6 stamps at $\$ 1.20=\$ 7.20$
5 stamps at $\$ 2.50=\$ 12.50$
Total is exactly $=\$ 25.70$
And the maximum number of stamps $=6+6+5=17$
9. a. (i) Required To Simplify: $x^{2} \times x^{3} \div x^{4}$

Solution:

$$
\begin{aligned}
x^{2} \times x^{3} \div x^{4} & =x^{2+3-4} \\
& =x^{1} \\
& =x
\end{aligned}
$$

(ii) Required To Simplify: $a^{\frac{3}{2}} b^{\frac{5}{2}} \times \sqrt{a b^{3}}$

Solution:

$$
\begin{aligned}
a^{\frac{3}{2}} b^{\frac{5}{2}} \times \sqrt{a b^{3}} & =a^{\frac{3}{2}} b^{\frac{5}{2}} \times\left(a b^{3}\right)^{\frac{1}{2}} \\
& =a^{\frac{3}{2}} b^{\frac{5}{2}} a^{\frac{1}{2}} b^{\frac{3}{2}} \\
& =a^{\frac{3}{2}+\frac{1}{2}} b^{\frac{5}{2}+\frac{3}{2}} \\
& =a^{2} b^{4}
\end{aligned}
$$

b. Data: $f(x)=2 x-3$
(i) Required To Calculate: $f(2)$

Calculation:

$$
\begin{aligned}
f(2) & =2(2)-3 \\
& =4-3 \\
& =1
\end{aligned}
$$

(ii) Required To Calculate: $f^{-1}(0)$

Calculation:

Let

$$
\begin{aligned}
y & =2 x-3 \\
y+3 & =2 x \\
x & =\frac{y+3}{2}
\end{aligned}
$$

Replace y by x

$$
\begin{aligned}
f^{-1}(x) & =\frac{x+3}{2} \\
f^{-1}(0) & =\frac{0+3}{2} \\
& =1 \frac{1}{2}
\end{aligned}
$$

(iii) Required To Calculate: $f^{-1} f(2)$

Calculation:

$$
\begin{aligned}
f(2) & =1 \\
\therefore f^{-1} f(2) & =f^{-1}(1) \\
& =\frac{1+3}{2} \\
& =2
\end{aligned}
$$

c. Data: Table of values of temperature vs time for a liquid as its cools.
(i) Required To Draw: The curve to represent the information given.

Solution:
Graph of Temperature vs Time

Note:
Scale is
Horizontal axis, $2 \mathrm{~cm} \equiv 10$ minutes, and not 10 seconds as printed.
(ii) (a) Required To Find: Temperature of the liquid after 15 minutes. Solution:
The temperature of the liquid after 15 minutes is approximately $49.5^{\circ} \mathrm{C}$. (Read off).
(b) Required To Find: Rate of cooling of the liquid at $t=30$. Solution:
The tangent to the curve at $t=30$ cuts the axes at A and B as shown.

$$
\begin{aligned}
& A \text { is }(0,50) \quad \text { and } B \text { is }(70,0) \\
& \begin{aligned}
\text { Gradient } A B & =-\frac{50}{70} \\
& =-0.7 \underline{1} \\
& =-0.7^{\circ} C \mathrm{~min}^{-1}
\end{aligned}
\end{aligned}
$$

(The negative sign \Rightarrow temperature is decreasing.)
The rate of cooling of the liquid a $t=30$ minutes is $0.7^{\circ} \mathrm{C} \mathrm{min}^{-1}$.
10. a. Data: $y+4 x=27$ and $x y+x=40$

Required To Calculate: x and y

Calculation:

Let

$$
\begin{align*}
& y+4 x=27 \ldots(1) \\
& x y+x=40 \ldots(2) \tag{2}
\end{align*}
$$

From (1)
$y=27-4 x$
Substitute in (2)

$$
\begin{aligned}
& x(27-4 x)+x=40 \\
& 27 x-4 x^{2}+x=40 \\
& 4 x^{2}-28 x+40=0 \\
& \div 4 \\
& x^{2}-7 x+10=0 \\
&(x-2)(x-5)=0 \\
& x=2 \text { or } 5
\end{aligned}
$$

When $x=2 \quad y=27-4(2)=19$
When $x=5 \quad y=27-4(5)=7$
Hence, $x=2$ and $y=19$ OR $x=5$ and $y=7$.
b. (i) Data: A shaded region illustrating a set of inequalities representing boys and girls in a cricket club
(a) Required To State: Whether the cricket club can have 10 boys and 5 girls.
Solution:
$x=$ no. of boys and $y=$ no. of girls
If $x=10$ and $y=5$, we note that the point $(10,5)$ does not lie in the shaded region. Hence, the club cannot have 10 boys and 5 girls.
(b) Required To State: Whether the cricket club can have 6 boys and 6 girls.
Solution:
If $x=6$ and $y=6$ we note that the point $(6,6)$ lies within the shaded region. Hence, the club can have 6 boys and 6 girls.
(ii) Required To Find: The inequalities that defines the shaded region. Solution:

The region with the shaded is on the side with the smaller angle. Hence, the region is $y<2 x$. (It may be $y \leq 2 x$ if the line is included).

The region shaded is on the side with the smaller angle. Hence, the region is $y<-\frac{4}{5} x+12$. (It may be $y \leq-\frac{4}{5} x+12$ if the line is included).

$$
\longrightarrow y=2
$$

The region shaded is above the horizontal $y=2$. Hence, the region is $y>2$. (It may be $y \geq 2$ if the line is included).
(iii) (a) Data: Profit of $\$ 3.00$ made on boy's uniform and profit of $\$ 5.00$ made of a girl's uniform.
Required To Find: An expression in x and y for the total profit made.

Solution:

The profit on x boy's uniforms at $\$ 3$ each and y girls uniforms at $\$ 5$ each $=(x \times 3)+(5 \times y)$
Let the total profit be P.

$$
P=3 x+5 y
$$

(b) Required To Calculate: The minimum profit the company can make. Calculation:

The minimum profit will be made when $x=1$ and $y=2$.

$$
\begin{aligned}
\therefore P_{\min } & =3(1)+5(2) \\
& =\$ 13
\end{aligned}
$$

11. a. Data: Diagram, shown below, with circle centre $O, S \hat{P} R=26^{\circ}$ and $O S$ parallel to $P R$.

(i) Required To Calculate: $P \hat{T} S$ Calculation:

$$
O \hat{S} P=26^{\circ}
$$

(alternate angles).

$$
O S=O P(\text { radii })
$$

$O \hat{P} R=26^{\circ}$
(Base angles of an isosceles triangle are equal).
Hence,

$$
\begin{aligned}
S \hat{O} P & =180^{\circ}-\left(26^{\circ}+26^{\circ}\right) \\
& =128^{\circ}
\end{aligned}
$$

(Sum of angles in a triangle $=180^{\circ}$).

$$
\begin{aligned}
P \hat{T S} & =\frac{1}{2}\left(128^{\circ}\right) \\
& =64^{\circ}
\end{aligned}
$$

(The angle subtended by a chord at the centre of the circle is twice the angle subtended at the circumference, standing on the same arc).
(ii) Required To Calculate: $R \hat{P} Q$ Calculation:

$$
O \hat{P} Q=90^{\circ}
$$

(The angle made by a tangent to a circle with radius, at the point of contact $=90^{\circ}$).

$$
\begin{aligned}
R \hat{P} Q & =90^{\circ}-\left(26^{\circ}+26^{\circ}\right) \\
& =38^{\circ}
\end{aligned}
$$

b. Data: Diagram showing a circle, centre O and chord $A B=14.5 \mathrm{~cm}$.

(i) Required To Calculate: The value of θ. Calculation:

OR

$\sin \frac{\theta}{2}=\frac{7.25}{8.5}$
$\frac{\theta}{2}=58.533$
$\theta=58.533 \times 2$
$=117.06$
$=117^{\circ}($ to the nearest degree $)$
(ii) Required To Calculate: Area of triangle $A O B$.

Calculation:

$$
\text { Area of } \begin{aligned}
\triangle A O B & =\frac{1}{2}(8.5)(8.5) \sin 117^{\circ} \\
& =32.2 \mathrm{~cm}^{2}
\end{aligned}
$$

OR

$$
\begin{aligned}
h & =\sqrt{(8.5)^{2}-(7.25)^{2}} \\
& =\sqrt{19.6875} \\
& =4.437
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\frac{14.5 \times 4.437}{2} \\
& =32.2 \mathrm{~cm}^{2}
\end{aligned}
$$

OR

$$
\begin{aligned}
s & =\frac{8.5+8.5+14.5}{2} \\
& =15.75
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\sqrt{15.75(15.75-8.5)(15.75-8.5)(15.75-14.5)}(\text { Heron's Formula }) \\
& =32.2 \mathrm{~cm}^{2}
\end{aligned}
$$

(iii) Required To Calculate: Area of the shaded region.

Calculation:

Area of the shaded segment $=$ Area of sector $A O B-$ Area of $\triangle A O B$

$$
\begin{aligned}
& =\frac{117^{\circ}}{360^{\circ}} \times \pi(8.5)^{2}-32.2 \\
& =41.5 \mathrm{~cm}^{2}
\end{aligned}
$$

(iv) Required To Calculate: Length of major arc $A B$.

Calculation:
Angle of major sector $=360^{\circ}-117^{\circ}$

$$
\begin{aligned}
\text { Length of major arc } & =\left(\frac{360^{\circ}-117^{\circ}}{360^{\circ}}\right) \times 2 \pi(8.5) \\
& =36.05 \mathrm{~cm}
\end{aligned}
$$

12. Data: Ship sails from point R to S and then to T.
a. Required To Draw: Diagram showing the journey of the ship from R to S to T. Solution:

b. (i) Required To Calculate: $R \hat{S} T$ Calculation:

$$
\begin{aligned}
R \hat{S} T & =68^{\circ}+33^{\circ} \\
& =101^{\circ}
\end{aligned}
$$

(ii) Required To Calculate: $R \hat{T} S$ Calculation:

$$
\begin{gathered}
\text { Let } R \hat{T} S=\theta \\
\frac{56}{\sin \theta}=\frac{75}{\sin 101^{\circ}}(\sin \text { rule }) \\
\sin \theta=\frac{56 \sin 101^{\circ}}{75} \\
=0.733 \\
\theta=\sin ^{-1} 0.733 \\
=47.13 \\
\left.=47.1^{\circ} \text { (to the nearest } 0.1 \text { of } a \text { degree }\right)
\end{gathered}
$$

(iii) Required To Calculate: Bearing from R to T. Calculation:

\therefore The bearing from R to $T=180^{\circ}+33^{\circ}+47.1^{\circ}$

$$
=260.1^{\circ}
$$

c. (ii) Required To Calculate: Distance $T X$.

Calculation:

$$
\begin{aligned}
& \begin{array}{l}
\alpha \\
=90^{\circ}-\left(47.1^{\circ}+33^{\circ}\right) \\
= \\
\hline
\end{array} 9^{\circ} \\
& \cos 9.9^{\circ}=\frac{T X}{75} \\
& T X=75 \cos 9.9^{\circ} \\
& =73.88 \mathrm{~km}
\end{aligned}
$$

13. Data: $\overrightarrow{O A}=a, \overrightarrow{O B}=b, \mathrm{P}$ is on $O A$ such that $\overrightarrow{O P}=2 P A$ and M is on $B A$ such that $B M=M A$ and $O B$ is produced to N such that $O B=B N$.
a. Required To Draw: The diagram showing the points P and M. Solution:

b. Required To Express: $\overrightarrow{A B}, \overrightarrow{P A}$ and $\overrightarrow{P M}$ in terms of \boldsymbol{a} and \boldsymbol{b}.

Solution:

$$
\begin{aligned}
\overrightarrow{A B} & =\overrightarrow{A O}+\overrightarrow{O B} \\
& =-(a)+b \\
& =-a+b
\end{aligned}
$$

If

$$
\begin{aligned}
\overrightarrow{O P} & =2 P A, \text { then } \\
\overrightarrow{O P} & =\frac{2}{3} \overrightarrow{O A} \\
& =\frac{2}{3} a
\end{aligned}
$$

and

$$
\overrightarrow{P A}=\frac{1}{3} a
$$

$$
\begin{gathered}
\overrightarrow{P M}=\overrightarrow{P A}+\overrightarrow{A M} \\
=\frac{1}{3} a+\overrightarrow{A M} \\
\overrightarrow{A M}=\frac{1}{2} \overrightarrow{A B} \\
\overrightarrow{P M}=\frac{1}{3} a+\frac{1}{2}(-a+b) \\
=\frac{1}{3} a-\frac{1}{2} a+\frac{1}{2} b \\
=
\end{gathered}
$$

c. \quad Required To Prove: P, M and N are collinear.

Proof:

$$
\begin{gathered}
\overrightarrow{O B}=B N \\
\overrightarrow{O N}=2 b \\
\overrightarrow{P N}=\overrightarrow{P O}+\overrightarrow{O N} \\
=-\frac{2}{3} a+2 b \\
=4\left(-\frac{1}{6} a+\frac{1}{2} b\right)
\end{gathered}
$$

$\therefore \overrightarrow{P N}=4 \overrightarrow{P M}$, that is a scalar multiple. Hence, $\overrightarrow{P N}$ is parallel to $\overrightarrow{P M}, P$ is a common point, M must lie on $P N$ and P, M and N lie on the same straight line, that is they are collinear.

Q.E.D

d. Data: $a=\binom{6}{2}$ and $b=\binom{1}{2}$

Required To Calculate: Length of $A N$.
Calculation:

$$
\begin{aligned}
\overrightarrow{A N}= & \overrightarrow{A O}+\overrightarrow{O N} \\
& =-a+2 b \\
= & -\binom{6}{2}+2\binom{1}{2} \\
& =\binom{-4}{2}
\end{aligned}
$$

Length of $A N=\sqrt{(-4)^{2}+(2)^{2}}$

$$
\begin{aligned}
& =\sqrt{20} \\
& =2 \sqrt{5} \text { units }
\end{aligned}
$$

14. a. Data: $X=\left(\begin{array}{rr}-2 & 0 \\ 5 & 1\end{array}\right)$ and $Y=\left(\begin{array}{rr}4 & -1 \\ 3 & 7\end{array}\right)$.

Required To Calculate: $X^{2}+Y$

Calculation:

$$
\begin{aligned}
X^{2} & =\left(\begin{array}{rr}
-2 & 0 \\
5 & 1
\end{array}\right)\left(\begin{array}{rr}
-2 & 0 \\
5 & 1
\end{array}\right) \\
& =\left(\begin{array}{rr}
e_{11} & e_{12} \\
e_{21} & e_{22}
\end{array}\right) \\
& =\left(\begin{array}{rr}
(-2 \times-2)+(0 \times 5) & (2 \times 0)+(0 \times 1) \\
(5 \times-2)+(1 \times 5) & (5 \times 0)+(1 \times 1)
\end{array}\right) \\
& =\left(\begin{array}{rr}
4 & 0 \\
-5 & 1
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
X^{2}+Y & =\left(\begin{array}{rr}
4 & 0 \\
-5 & 1
\end{array}\right)+\left(\begin{array}{rr}
4 & -1 \\
3 & 7
\end{array}\right) \\
& =\left(\begin{array}{rr}
8 & -1 \\
-2 & 8
\end{array}\right)
\end{aligned}
$$

b. Data: $Q \xrightarrow{\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)} Q^{\prime}$

Required To Find: 2×2 matrix that maps Q^{\prime} back to Q.

Solution:

Let
$M=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$
If M maps Q onto Q^{\prime}, then M^{-1} maps Q^{\prime} onto Q.
$\operatorname{det} M=(1 \times 3)-(2 \times 1)$

$$
=3-2
$$

$$
=1
$$

$$
\begin{aligned}
M^{-1} & =\frac{1}{1}\left(\begin{array}{rr}
3 & -(2) \\
-(1) & 1
\end{array}\right) \\
& =\left(\begin{array}{rr}
3 & -2 \\
-1 & 1
\end{array}\right) \\
\therefore Q^{\prime} \rightarrow & Q \text { by }\left(\begin{array}{rr}
3 & -2 \\
-1 & 1
\end{array}\right)
\end{aligned}
$$

Note: The coordinates of Q and Q^{\prime} are totally irrelevant in this question.
c. Data: $D E F \xrightarrow{\text { Enlargement }} D^{\prime} E^{\prime} F^{\prime}$
(i) (a) Required To Calculate: Scale factor k. Calculation:
Let the enlargement be $L . L$ has a centre O and scale factor $k . L$ may be represented by $\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right)$.

$$
\begin{aligned}
\left(\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right)\binom{5}{12} & =\binom{7 \frac{1}{2}}{18} \\
\binom{5 k}{12 k} & =\binom{7 \frac{1}{2}}{18}
\end{aligned}
$$

Equating corresponding entries.

$$
\begin{aligned}
5 k & =7 \frac{1}{2} \\
k & =1 \frac{1}{2}
\end{aligned}
$$

OR

$$
\begin{aligned}
12 k & =18 \\
k & =1 \frac{1}{2}
\end{aligned}
$$

(b) Required To Find: Coordinates of E^{\prime} and F^{\prime} Solution:
The translation matrix for L is
$L=\left(\begin{array}{cc}1 \frac{1}{2} & 0 \\ 0 & 1 \frac{1}{2}\end{array}\right)$
and similarly

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 \frac{1}{2} & 0 \\
0 & 1 \frac{1}{2}
\end{array}\right)\left(\begin{array}{ll}
2 & 8 \\
7 & 4
\end{array}\right)=\left(\begin{array}{cc}
3 & 12 \\
10 \frac{1}{2} & 6
\end{array}\right) \text { and } \\
& E^{\prime}=\left(3,10 \frac{1}{2}\right) \text { and } F^{\prime}=(12,6)
\end{aligned}
$$

(ii) Data: $D^{\prime} E^{\prime} F^{\prime}$ undergoes a clockwise rotation of 90° about the origin.
(a) Required To Find: 2×2 matrix that represents the transformation.

Solution:

The 2×2 matrix that represents a 90° clockwise rotation about O is $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$.
(b) Required To Find: Coordinates of $D^{\prime \prime}, E^{\prime \prime}$ and $F^{\prime \prime}$ Solution:

$$
\begin{aligned}
& \left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ccc}
7 \frac{1}{2} & 3 & 12 \\
18 & 10 \frac{1}{2} & 6
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\left(0 \times 7 \frac{1}{2}\right)+(1 \times 18) & (0 \times 3)+\left(1 \times 10 \frac{1}{2}\right) & (0 \times 12)+(1 \times 6) \\
\left(-1 \times 7 \frac{1}{2}\right)+(0 \times 18) & (-1 \times 3)+\left(0 \times-10 \frac{1}{2}\right) & (-1 \times 12)+(0 \times 6)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
18 & 10 \frac{1}{2} & 6 \\
-7 \frac{1}{2} & -3 & -12
\end{array}\right)
\end{aligned}
$$

Hence $D^{\prime \prime}=\left(18,-7 \frac{1}{2}\right), E^{\prime \prime}=\left(10 \frac{1}{2},-3\right)$ and $F^{\prime \prime}=(6,-12)$.
(c) Required To Find: 2×2 matrix that maps DEF onto $D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$. Solution:

$$
\left.\begin{array}{rl}
\Delta D E F & \xrightarrow{\left(\begin{array}{cc}
1 \frac{1}{2} & 0 \\
0 & 1 \frac{1}{2}
\end{array}\right)} \Delta D^{\prime} E^{\prime} F^{\prime} \xrightarrow{\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)} \Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime} \\
\Delta D E F \xrightarrow{\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \times\left(\begin{array}{cc}
1 \frac{1}{2} & 0 \\
0 & 1 \frac{1}{2}
\end{array}\right)} \Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime} \\
\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 \frac{1}{2} & 0 \\
0 & 1 \frac{1}{2}
\end{array}\right) & =\left(\begin{array}{ll}
\left(0 \times 1 \frac{1}{2}\right)+(1 \times 0) & (0 \times 0)+\left(1 \times 1 \frac{1}{2}\right) \\
\left(-1 \times 1 \frac{1}{2}\right.
\end{array}\right)+(0 \times 0) \\
(-1 \times 0)+\left(0 \times 1 \frac{1}{2}\right)
\end{array}\right) .
$$

Hence, the single matrix that maps $\triangle D E F$ onto $\triangle D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ is

$$
\left(\begin{array}{rr}
0 & 1 \frac{1}{2} \\
-1 \frac{1}{2} & 0
\end{array}\right)
$$

