CSEC JANUARY 2008 MATHEMATICS GENERAL PROFICIENCY (PAPER 2)

Section I

1. a. (i)
(i) Required To Calculate: $\frac{1 \frac{1}{7}-\frac{3}{4}}{2 \frac{1}{2} \times \frac{1}{5}}$

Calculation:

Numerator:

$$
\begin{aligned}
1 \frac{1}{7}-\frac{3}{4} & =\frac{8}{7}-\frac{3}{4} \\
& =\frac{4(8)-7(3)}{28} \\
& =\frac{32-21}{28} \\
& =\frac{11}{28}
\end{aligned}
$$

Denominator:
$2 \frac{1}{2} \times \frac{1}{5}=\frac{5}{2} \times \frac{1}{5}$

$$
=\frac{1}{2}
$$

Hence,

$$
\begin{aligned}
& \begin{aligned}
\frac{1 \frac{1}{7}-\frac{3}{4}}{2 \frac{1}{2} \times \frac{1}{5}} & =\frac{\frac{11}{28}}{\frac{1}{2}} \\
& =\frac{11}{28} \times \frac{2}{1} \\
& =\frac{11}{14}(\text { in exact form })
\end{aligned}
\end{aligned}
$$

(ii) Required To Calculate: $2-\frac{0.24}{0.15}$

Calculation:

$$
\begin{aligned}
2-\frac{0.24}{0.15} & =2-1.6 \\
& =0.4 \text { (in exact form) }
\end{aligned}
$$

b. Data: Bicycle with prices for cash or hire purchase (H.P.) payments.
(i) Required To Calculate: Total hire purchase price for the bicycle.

Calculation:

Hire purchase price of the bicycle $=$ Deposit + Total for 10 installments

$$
\begin{aligned}
& =\$ 69.00+10(\$ 28.50) \\
& =\$ 354.00
\end{aligned}
$$

(ii) Required To Calculate: Difference between hire purchase price and cash price.
Calculation:
Difference between the hire purchase price and the cash price
= \$354.00-\$319.95
$=\$ 34.05$
(iii) Required To Express: Difference between 2 prices as a percentage of the cash price.

Solution:

The difference in price as a percentage of the cash price
$=\left(\frac{34.05}{319.95} \times 100\right) \%$
$=10.642 \%$
$=10.64 \%$ (to 2 decimal places)
2. a. (i) Required To Solve: $3-2 x<7$.

Solution:
$3-2 x<7$
$-2 x<7-3$
$-2 x<4$
$\times-1$

$$
2 x>-4
$$

$\div 2$

$$
x>-2
$$

(ii) Required To Determine: Smallest value of x that satisfies the above inequality.

Solution:

$W=\{0,1,2,3, \ldots\}$
If $x \in W$, then the smallest x is 0 .
b. Required To Factorise: (i) $x^{2}-x y$, (ii) $a^{2}-1,($ (iii $) 2 p-2 q-p^{2}+p q$ Solution:

$$
\begin{align*}
x^{2}-x y & =x \cdot x-x \cdot y \tag{i}\\
& =x(x-y)
\end{align*}
$$

(ii) $a^{2}-1=(a)^{2}-(1)^{2}$

This is a difference of 2 squares
And $a^{2}-1=(a-1)(a+1)$
(iii) $2 p-2 q-p^{2}+p q=2(p-q)-p(p-q)$

$$
=(p-q)(2-p)
$$

c. Data: Table showing types of cakes, cost and the number sold.
(i) Required To Find: An expression, in terms of k, for the amount of money collected for the sale of sponge cakes.

Solution:

The cost of 2 sponge cakes at $\$(k+5)$ each $=2 \times(k+5)$

$$
=\$(2 k+10)
$$

(ii) Required To Find: An expression in terms of k, for the total amount of collected.

Solution:

Cost of sponge cakes $=\$(2 k+10)$
Cost of 10 chocolate cakes at $\$ k$ each $=k \times 10$

$$
=\$ 10 k
$$

Cost of 4 fruit cakes at $\$ 2 k$ each $=2 k \times 4$

$$
=\$ 8 k
$$

Total amount of money collected $=(2 k+10)+10 k+8 k$

$$
=\$(20 k+10)
$$

(iii) Data: Total amount of money collected $=\$ 140.00$

Required To Calculate: k
Calculation:
Total amount of money collected $=\$ 140.00$

$$
\begin{aligned}
\therefore 20 k+10 & =140 \\
20 k & =140-10 \\
20 k & =130 \\
k & =\frac{130}{20} \\
& =6.5
\end{aligned}
$$

3. a. Data: Given the elements of universal set, U, S and T.
(i) Required To Draw: Venn diagram to represent the information given. Solution:

$$
\begin{aligned}
S & =\{k, l, m, p\} \\
T & =\{k, p, q\} \\
S \cap T & =\{k, p\}
\end{aligned}
$$

(ii) (a) Required To List: Members of $S \cup T$. Solution:

$$
S \cup T=\{l, m, k, p, q\} \text { as shown. }
$$

(b) Required To List: Members of S^{\prime}.

Solution:

$$
S^{\prime}=\{r, q, n\} \text { as shown. }
$$

b. Data: Quadrilateral $A B C D$ with $A B=A D, B \hat{C} D=90^{\circ}, D \hat{B} C=42^{\circ}$ and $A B$ parallel to DC.

(i) Required To Calculate: $A \hat{B} C$

Calculation:

$$
\begin{aligned}
A \hat{B C} C & =180^{\circ}-90^{\circ} \\
& =90^{\circ}
\end{aligned}
$$

(Co-interior angles are supplementary).
(ii) Required To Calculate: $A \hat{B} D$ Calculation:

$$
\begin{aligned}
A \hat{B} D & =90^{\circ}-42^{\circ} \\
& =48^{\circ}
\end{aligned}
$$

(iii) Required To Calculate: $B \hat{A} D$

Calculation:

$$
A B=A D(\text { data })
$$

$\therefore A \hat{D} B=48^{\circ}$
(Base angles of an isosceles triangle are equal).

$$
\begin{aligned}
B \hat{A} D & =180^{\circ}-\left(48^{\circ}+48^{\circ}\right) \\
& =84^{\circ}
\end{aligned}
$$

$\left(\right.$ Sum of angles in a triangle $\left.=180^{\circ}\right)$.
4. a. Data: John left Port A at 07:30 hours and travelled to Port B in the same time zone.
He arrives at Port B at 14:20 hours.
(i) Required To Find: Duration of the journey. Solution:
Departure time from A is 07:30 hours.
Arrival time at B is $14: 20$ hours.
Duration of the journey $=14: 20$

$$
\begin{aligned}
& \frac{-7: 30}{6: 50} \\
& =6 \text { hours } 50 \text { minutes } \\
& =6 \frac{5}{6} \text { hours }
\end{aligned}
$$

(ii) Data: John travelled 410 km .

Required To Calculate: Average speed.
Calculation:

$$
\begin{aligned}
\text { Average speed } & =\frac{\text { Total distance covered }}{\text { Total time taken }} \\
& =\frac{410 \mathrm{~km}}{6 \frac{5}{6} \text { hours }} \\
& =60 \mathrm{kmh}^{-1}
\end{aligned}
$$

b. Data: Diagram showing a circle of radius 3.5 cm , centre O and square $O P Q R$.

(i) Required To Calculate: Area of the circle.

Calculation:

$$
\begin{aligned}
\text { Area of circle } & =\frac{22}{7}(3.5)^{2} \\
& =38.5 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) Required To Calculate: Area of square $O P Q R$.

Calculation:
Area of square $O P Q R=3.5 \times 3.5$

$$
=12.25 \mathrm{~cm}^{2}
$$

(iii) Required To Calculate: Area of the shaded region.

Calculation:
Area of the shaded region $=$ Area of square $O P Q R-$ Area of sector $O P R$.

$$
\begin{aligned}
& =12.25-\frac{1}{4}(38.5) \\
& =2.625 \mathrm{~cm}^{2} \\
& \left.=2.63 \mathrm{~cm}^{2} \text { (to } 2 \text { decimal places }\right)
\end{aligned}
$$

5. Data: Bar graph illustrating the number of books read by the boys of a book club.
a. Required To Draw: The frequency data representing the information given.

Solution:
From the bar graph

No. of books read, \boldsymbol{x}	No. of boys, \boldsymbol{f}
0	2
1	6
2	17
3	8
4	3
$\sum f=36$	

b. Required To Find: The number of boys in the book club.

Solution:

No. of boys in the book club $=\sum f$

$$
=36
$$

c. Required To Find: Modal number of books read.

Solution:

Modal number of books read $=2$, as $x=2$ corresponds to the maximum frequency, 17.
d. Required To Calculate: Total number of books read.

Calculation:

Total number of books read $=(2 \times 0)+(6 \times 1)+(17 \times 2)+(8 \times 3)+(3 \times 4)$

$$
\begin{aligned}
& =6+34+24+12 \\
& =76
\end{aligned}
$$

e. Required To Calculate: The mean number of books read.

Calculation:

The mean number of books read, \bar{x}.

$$
\begin{aligned}
\bar{x} & =\frac{\sum f x}{\sum f} \\
& =\frac{76}{36} \\
& =2.1
\end{aligned}
$$

This value is a whole number and may be represented by the integer 2 .
f. Required To Calculate: Probability a randomly chose boy reads at least books. Calculation:
$P($ Randomly chosen boy reads ≥ 3 books $)=\frac{\text { No. of boys reading } \geq 3 \text { books }}{\text { Total no. of boys }}$

$$
\begin{aligned}
& =\frac{8+3}{\sum f=36} \\
& =\frac{11}{36}
\end{aligned}
$$

6. a. Data: Diagram showing a pattern of congruent right angled triangles as

(i) Required To Describe: Transformation that maps $\triangle B C L$ onto $\triangle F H L$. Solution:

$\triangle B C L \rightarrow \triangle H F L$
L is a common point.
Image is re-oriented and congruent.
$B L F$ is a straight line.
$\therefore B C L$ is mapped onto $H F L$ by a rotation of 180° (clockwise or anticlockwise) about L.
(ii) Required To Describe: Transformation that maps $\triangle B C L$ onto $\triangle H F G$. Solution:
$\triangle B C L$ and $\triangle H F G$ have the same 'orientation'.

$\triangle B C L$ is mapped onto $\triangle H F G$ by a horizontal shift 4 units to the right and 1 unit vertically downwards. This may be represented by the translation, T where $T=\binom{4}{-1}$.
b. (i) Required To Construct: Parallelogram $W X Y Z$, in which, $W X=7.0 \mathrm{~cm}$, $W Z=5.5 \mathrm{~cm}$ and $X \hat{W} Z=60^{\circ}$.

Solution:

(ii) Required To Find: The length of $W Y$.

Solution:

$W Y=10.9 \mathrm{~cm}$ (by measurement.)
7. Data: Incomplete table for $y=x^{2}-4 x$.
a. Required To Complete: The table of values for $y=x^{2}-4 x$.

Solution:

\boldsymbol{x}	-1	0	1	2	3	4	5
\boldsymbol{y}	5	0	-3	-4	-3	0	5

When $x=0$

$$
\begin{aligned}
y & =(0)^{2}-4(0) \\
& =0
\end{aligned}
$$

When $x=3$

$$
\begin{aligned}
y & =(3)^{2}-4(3) \\
& =-3
\end{aligned}
$$

When $x=5$

$$
\begin{aligned}
y & =(5)^{2}-4(5) \\
& =5
\end{aligned}
$$

b. Required To Draw: The graph of $y=x^{2}-4 x$.

Solution:

c. (ii) Required To Find: Points at which the curve meets the line. Solution:
The line $y=2$ and the curve $y=x^{2}-4 x$ meet at $x=-0.5$ and $x=4.5$.
(iii) Required To Find: The equation whose roots are the coordinates found above.

Solution:

$x=-0.5$ and $x=4.5$ are the roots of the equation $x^{2}-4 x=2$ or $x^{2}-4 x-2=0$.
8. a. Data: Table showing the sum of rational numbers.

Required To Complete: The table given.

\boldsymbol{n}	SERIES	SUM	FORMULA
1	1	1	$\frac{1}{2}(1)(1+1)$
2	$1+2$	3	$\frac{1}{2}(2)(2+1)$
3	$1+2+3$	6	$\frac{1}{2}(3)(3+1)$
4	$1+2+3+4$	10	$\frac{1}{2}(4)(4+1)$
5	$1+2+3+4+5$	15	$\frac{1}{2}(5)(5+1)$
(i) 6	$1+2+3+4+5+6$	21	$\frac{1}{2}(6)(6+1)$
\vdots	\vdots	\vdots	\vdots
8	$1+2+3+4+5+6+7+8$	36	$\frac{1}{2}(8)(8+1)$
\vdots	\vdots	\vdots	\vdots
(ii) n	$1+2+3+4+5+6+7+8+\ldots+$		$\frac{1}{2} n(n+1)$

The formula for the sum is a constant, $\frac{1}{2} n(n+1)$, example
When $n=5$

$$
\text { Sum is }=\frac{1}{2}(5)(5+1)=15
$$

$$
\therefore \text { Sum }=15
$$

When $n=6$

$$
\begin{aligned}
\text { Sum } & =\frac{1}{2}(6)(6+1)=21 \\
\therefore \text { Sum } & =21
\end{aligned}
$$

For (ii), the formula is $\frac{1}{2} n(n+1)$.

b. Data:

$1+2+3=6$ and $1^{3}+2^{3}+3^{3}=6^{2}=36$
So too,
$1+2+3+4=10$ and $1^{3}+2^{3}+3^{3}+4^{3}=10^{2}$

$$
=100
$$

(i) Required To Find: $1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3}+7^{3}+8^{3}$

Solution:

$$
1+2+3+4+5+6+7+8=36
$$

From the table

$$
\begin{aligned}
1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3}+7^{3}+8^{3} & =36^{2} \\
& =1296
\end{aligned}
$$

(ii) Required To Find: $1^{3}+2^{3}+3^{3}+\ldots+n^{3}$ Solution:

$$
\begin{aligned}
1+2+3+\ldots+n & =\frac{1}{2} n(n+1) \\
\therefore 1^{3}+2^{3}+3^{3}+\ldots+n^{3} & =\left\{\frac{1}{2} n(n+1)\right\}^{2}
\end{aligned}
$$

c. \quad Required To Find: $1^{3}+2^{3}+3^{3}+4^{3}+\ldots+12^{3}$

Solution:

$$
\begin{aligned}
1+2+3+4+\ldots+12 & =\frac{1}{2}(12)(12+1) \\
& =78 \\
\therefore 1^{3}+2^{3}+3^{3}+4^{3} & =(78)^{2} \\
& =6084
\end{aligned}
$$

9. a. Data: Volume, V of a gas varies inversely as the pressure, P, with temperature constant.
(i) Required To Find: Equation relating V to P.

Solution:

$$
\begin{aligned}
& V \propto \frac{1}{P} \\
& V=k \times \frac{1}{P}
\end{aligned}
$$

(k is constant of proportion or variation)
(ii) Required To Find: k when $V=12.8$ and $P=500$.

Solution:

$V=12.8$ when $P=500$

$$
\begin{aligned}
12.8 & =k \times \frac{1}{500} \\
k & =12.8 \times 500 \\
& =6400
\end{aligned}
$$

(iii) Required To Calculate: V when $P=480$.

Calculation:

When

$$
P=480
$$

$$
\begin{aligned}
V & =6400 \times \frac{1}{480} \\
& =13 \frac{1}{3}
\end{aligned}
$$

b. Data: Right-angled triangle of sides $a,(a-7)$ and $(a+1)$.

(i) Required To Find: An equation in terms of a to relate the three sides, using Pythagoras' Theorem.
Solution:

$$
\begin{array}{rlr}
(a)^{2}+(a-7)^{2} & =(a+1)^{2} & \text { Pythagoras' Theorem } \\
a^{2}+a^{2}-14 a+49 & =a^{2}+2 a+1 & \\
a^{2}-16 a+48 & =0 &
\end{array}
$$

(ii) Required To Calculate: a

Calculation:

$$
\begin{aligned}
a^{2}-16 a+48 & =0 \\
(a-12)(a-4) & =0 \\
a & =4 \text { or } 12
\end{aligned}
$$

If $a=4$, the side $(a-7)$ would compute to be a negative value. Hence, $a=12$ only.
(iii) Required To State: The lengths of the 3 sides of the triangle.

Solution:

The lengths of the 3 sides are

The sides are 5,12 and 13 units.
10. a. Data: School buys x balls and y bats.
(i) Required To Find: Inequality for the information given. Solution:
Total number of balls and bats is no more than 30 .
$x+y$

$$
\begin{equation*}
\leq 30 \tag{1}
\end{equation*}
$$

Hence, $x+y \leq 30$.
(ii) Data: School allows no more than $\$ 360$ to be spent on bats and balls. The cost of a ball is $\$ 6$ and the cost of a bat is $\$ 24$.
Required To Find: Inequality to represent the information given. Solution:
The cost of x balls at $\$ 6$ each and y bats at $\$ 24$ each is $(x \times 6)+(y \times 24)=6 x+24 y$
Budget allows no more than $\$ 360$. Similarly, $6 x+24 y \leq 360$
$\div 6$
$x+4 y \leq 60 \ldots$ (1)
b. Required To Draw: The graphs of the inequalities shown above, shade the region that satisfies the inequalities and state the vertices of the feasible region.

Solution:

$x \geq 0$ and $y \geq 0$ identifies the $1^{\text {st }}$ quadrant.

Obtaining 2 points on the line $x+y=30$
When $x=0$

$$
\begin{aligned}
0+y & =30 \\
y & =30
\end{aligned}
$$

The line $x+y=30$ passes through the point $(0,30)$.
When $y=0$

$$
\begin{aligned}
x+0 & =30 \\
x & =30
\end{aligned}
$$

The line $x+y=30$ passes through the point $(30,0)$.

The region with the smaller angle corresponds to the \leq region. The region which satisfies $x+y \leq 30$ is

$$
\begin{array}{|c|}
\mathrm{x}_{\mathrm{x}}^{\mathrm{x}} \mathrm{x} \\
\mathrm{x}
\end{array} \quad x+y \leq 30
$$

Obtaining 2 points on the line $x+4 y=60$.
When $x=0$

$$
\begin{gathered}
0+4 y=60 \\
4 y=60 \\
y=\frac{60}{4} \\
=15
\end{gathered}
$$

The line $x+4 y=60$ passes through the point $(0,15)$.
When $y=0$

$$
\begin{aligned}
x+4(0) & =60 \\
x & =60
\end{aligned}
$$

The line $x+4 y=60$ passes through the point $(60,0)$.

The region with the smaller angle corresponds to the \leq region.
The region which satisfies $x+4 y \leq 60$ is

$$
\begin{array}{|lll}
\hline 0 & 0 \\
0 & 0
\end{array} \quad x+4 y \leq 60
$$

The feasible region is the area in which both previously shaded regions overlap.

The vertices of the feasible region are $O(0,0), A(0,15), B(20,10)$ and $C(30,0)$.
c. Data: Profit made of each ball is $\$ 1$ and profit made on each bat is $\$ 3$.
(i) Required To Find: The profit for reach of the combinations above. Solution:
$P=x+3 y$
Testing the point $(0,15),(30,0)$ and $(20,10)$.
When $x=0$ and $y=15$

$$
\begin{aligned}
P & =0+3(15) \\
& =\$ 45
\end{aligned}
$$

When $x=30$ and $y=0$

$$
\begin{aligned}
P & =30+3(0) \\
& =\$ 30
\end{aligned}
$$

When $x=20$ and $y=10$

$$
\begin{aligned}
P & =20+3(10) \\
& =\$ 50
\end{aligned}
$$

As a point of interest, the only point to be considered should be $(20,10)$, where $x=20$ and $y=10$ since the question specifically indicates - a school buys x balls AND y balls. (They cannot buy 0 bats or 0 balls, that is x and $y \in Z^{+}$.)
(ii) Required To Find: Maximum profit that may be made.

Solution:

The maximum profit, $P_{\max }=\$ 50$, which occurs when $x=20$ and $y=10$.
11. a. Data: O is the centre of the circle $W X Y$ and $W \hat{X} Y=50^{\circ}$

(i) Required To Calculate: $W \hat{O} Y$ Calculation:

$$
\begin{aligned}
W \hat{O} Y & =2\left(50^{\circ}\right) \\
& =100^{\circ}
\end{aligned}
$$

(The angle subtended by a chord at the centre of the circle is twice the angle subtended at the circumference, standing on the same arc).
(ii) Required To Calculate: $O \hat{W} Y$ Calculation:
$O W=O Y \quad$ (radii)
$O \hat{W} Y=O \hat{Y} W$ (the base angles of an isosceles triangle are equal)
$=\frac{180^{\circ}-100^{\circ}}{2}$
$=40^{\circ}$
$\left(\right.$ Sum of the angles in a triangle $\left.=180^{\circ}\right)$.
b. Data: Three buoys A, B and C, their relative distances apart and their positions.
(i) Required To Sketch: Diagram showing the information given. Solution:

(ii) Required To Calculate: Distance $A C$.

Calculation:

$$
\begin{aligned}
A \hat{B} C & =90^{\circ}-10^{\circ} \\
& =80^{\circ} \\
A C^{2} & =(125)^{2}+(75)^{2}-2(125)(75) \cos 80^{\circ}(\text { cos law }) \\
A C & =134.14 \mathrm{~m} \\
A C & =134.1 \mathrm{~m}
\end{aligned}
$$

(iii) Required To Calculate: Bearing of C from A. Calculation:
Let

$$
\begin{aligned}
B \hat{A} C & =\alpha^{\circ} \\
\frac{75}{\sin \alpha} & =\frac{134.1}{\sin 80^{\circ}} \quad \text { (Sine Law) } \\
\sin \alpha & =\frac{75 \sin 80^{\circ}}{134.1} \\
\alpha & =33.4^{\circ}
\end{aligned}
$$

The bearing of C from $A=90^{\circ}+33.4^{\circ}$

$$
=123^{\circ} \text { to the nearest degree }
$$

12. a. Data: Diagram illustrating a vertical pole and tower standing on horizontal ground.

(i) Required To Calculate: Horizontal distance $A B$. Calculation:
$D \hat{B} A=5^{\circ}$
(alternate angles).

$$
\begin{aligned}
\tan 5^{\circ} & =\frac{2.5}{A B} \\
A B & =\frac{2.5}{\tan 5^{\circ}} \\
& =28.5 \underline{\mathrm{~m}} \\
& =28.6 \mathrm{~m} \text { (to } 1 \text { decimal place })
\end{aligned}
$$

(ii) Required To Calculate: Height of the tower $B C$. Calculation:
$D E=28.57$
(Opposite sides of a rectangle).

$$
\begin{aligned}
\tan 20^{\circ} & =\frac{C E}{28.57} \\
C E & =28.57 \tan 20^{\circ} \\
& =10.39 \mathrm{~m}
\end{aligned}
$$

Height of tower $B C=2.5+10.39$

$$
\begin{aligned}
& =12.89 \mathrm{~m} \\
& =12.9 \mathrm{~m}
\end{aligned}
$$

b. No solution has been offered for this question as it is based on latitude and longitude (Earth Geometry) which has been removed from the syllabus)
13. a. Data: P and Q are the midpoints of $A B$ and $B C$ of vector triangle $A B C$.
(i) Required To Sketch: Diagram to show the information given. Solution:
$3 y$
$2 x$

$$
\overrightarrow{A B}=2 x
$$

$$
\therefore \overrightarrow{A P}=\overrightarrow{P B}
$$

$$
=x
$$

$$
\overrightarrow{B C}=3 y
$$

$$
\therefore \overrightarrow{B Q}=\overrightarrow{Q C}
$$

$$
=\frac{1}{2}(3 y)
$$

$$
=\frac{3}{2} y
$$

$$
=1 \frac{1}{2} y
$$

(ii) (a) Required To Find: Expression in terms of x and y for $\overrightarrow{A C}$. Solution:

$$
\begin{aligned}
\overrightarrow{A C} & =\overrightarrow{A B}+\overrightarrow{B C} \\
& =2 x+3 y
\end{aligned}
$$

(b) Required To Find: Expression in terms of x and y for $\overrightarrow{P Q}$. Solution:

$$
\begin{aligned}
\overrightarrow{P Q} & =\overrightarrow{P B}+\overrightarrow{B Q} \\
& =x+1 \frac{1}{2} y
\end{aligned}
$$

(iii) Required To Prove: $\overrightarrow{P Q}=\frac{1}{2} \overrightarrow{A C}$

Proof:

$$
\begin{aligned}
\overrightarrow{P Q} & =x+1 \frac{1}{2} y \\
\overrightarrow{A C} & =2 x+3 y \\
& =2\left(x+1 \frac{1}{2} y\right) \\
& =2 \overrightarrow{P Q} \\
\overrightarrow{P Q} & =\frac{1}{2} \overrightarrow{A C}
\end{aligned}
$$

Q.E.D.

b. Data: $\overrightarrow{O R}=\binom{3}{4}, \overrightarrow{O S}=\binom{-1}{6}$ and $\overrightarrow{O T}=\binom{5}{-2}$

(i)
(a) Required To Express: $\overrightarrow{R T}$ in the form $\binom{a}{b}$. Solution:

$$
\begin{aligned}
\overrightarrow{R T} & =\overrightarrow{R O}+\overrightarrow{O T} \\
& =-\binom{3}{4}+\binom{5}{-2} \\
& =\binom{2}{-6}
\end{aligned}
$$

(b) Required To Express: $\overrightarrow{S R}$ in the form $\binom{a}{b}$. Solution:

$$
\begin{aligned}
\overrightarrow{S R} & =\overrightarrow{S O}+\overrightarrow{O R} \\
& =-\binom{-1}{6}+\binom{3}{4} \\
& =\binom{4}{-2}
\end{aligned}
$$

(ii) (a) Required To Find: The position vector of F. Solution:
If $R F=F T$, then F is the midpoint of $\overrightarrow{R T}$.
$\overrightarrow{O F}=\binom{\frac{3+5}{2}}{\frac{4-2}{2}}$
$=\binom{4}{1}$
OR

$$
\begin{aligned}
\overrightarrow{R F} & =\frac{1}{2} \overrightarrow{R T} \\
& =\frac{1}{2}\binom{2}{-6} \\
& =\binom{1}{-3} \\
\overrightarrow{O F} & =\overrightarrow{O R}+\overrightarrow{R F} \\
& =\binom{3}{4}+\binom{1}{-3} \\
& =\binom{4}{1}
\end{aligned}
$$

(b) Required To State: Coordinates of F. Solution:

$$
\text { If } \overrightarrow{O F}=\binom{4}{1} \text {, then } F=(4,1)
$$

14. a. Data: $A=\left(\begin{array}{ll}2 & 1\end{array}\right), \quad B=\left(\begin{array}{rr}1 & x \\ y & -2\end{array}\right)$ and $C=(5$
$A B=C$.
Required To Calculate: x and y. Calculation:

$$
\begin{aligned}
A B & =\left(\begin{array}{ll}
2 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & x \\
y & -2
\end{array}\right) \\
& =((2 \times 1)+(1 \times y) \quad(2 \times x)+(1 \times-2)) \\
& =\left(\begin{array}{ll}
2+y & 2 x-2
\end{array}\right)
\end{aligned}
$$

If $A B=C$ then

$$
(2+y \quad 2 x-2)=\left(\begin{array}{ll}
5 & 6
\end{array}\right)
$$

Equating corresponding entries.

$$
\begin{aligned}
2+y & =5 \\
y & =3 \\
2 x-2 & =6 \\
2 x & =8 \\
x & =4
\end{aligned}
$$

$\therefore x=4$ and $y=3$
b. Data: $R=\left(\begin{array}{rr}2 & -1 \\ 1 & 3\end{array}\right)$.
(i) Required To Show: R is a non-singular matrix.

Proof:
$\operatorname{det} R=(2 \times 3)-(-1 \times 1)=6+1=7$
Since $R \neq 0$, then R is non-singular.
(ii) Required To Find: R^{-1}

Solution:

$$
\begin{aligned}
R^{-1} & =\frac{1}{7}\left(\begin{array}{rr}
3 & -(-1) \\
-(1) & 2
\end{array}\right) \\
& =\left(\begin{array}{rr}
\frac{3}{7} & \frac{1}{7} \\
-\frac{1}{7} & \frac{2}{7}
\end{array}\right)
\end{aligned}
$$

(iii) Required To Prove: $R R^{-1}=I$

Proof:

$$
\begin{aligned}
R \times R^{-1} & =\left(\begin{array}{rr}
2 & -1 \\
1 & 3
\end{array}\right)\left(\begin{array}{rr}
\frac{3}{7} & \frac{1}{7} \\
-\frac{1}{7} & \frac{2}{7}
\end{array}\right) \\
& =\left(\begin{array}{ll}
e_{11} & e_{12} \\
e_{21} & e_{22}
\end{array}\right) \\
e_{11} & =\left(2 \times \frac{3}{7}\right)+\left(-1 \times-\frac{1}{7}\right) \\
& =1 \\
e_{12} & =\left(2 \times \frac{1}{7}\right)+\left(-1 \times \frac{2}{7}\right) \\
& =0 \\
e_{21} & =\left(1 \times \frac{3}{7}\right)+\left(3 \times-\frac{1}{7}\right) \\
& =0 \\
e_{22} & =\left(1 \times \frac{1}{7}\right)+\left(3 \times \frac{2}{7}\right) \\
& =1 \\
\therefore R R^{-1} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =I
\end{aligned}
$$

Q.E.D.
(iv) Data: $2 x-y=0$ and $x+3 y=7$

Required To Calculate: x and y by matrix method.
Calculation:

$$
\left.\begin{array}{rl}
2 x-y & =0 \ldots(1) \\
x+3 y=7 \\
\left(\begin{array}{rr}
2 & -1 \\
1 & 3
\end{array}\right)\binom{x}{y} & =\binom{0}{7} \\
R\binom{x}{y} & =\binom{0}{7} \\
\times R^{-1} \\
R \times R^{-1}\binom{x}{y} & =R^{-1}\binom{0}{7} \\
I \times\binom{ x}{y} & =R^{-1}\binom{0}{7} \\
\binom{x}{y} & =\left(\begin{array}{ll}
\frac{3}{7} & \frac{1}{7} \\
-\frac{1}{7} & \frac{2}{7}
\end{array}\right)\binom{0}{7} \\
& =\left(\begin{array}{l}
\frac{3}{7} \times 0
\end{array}\right)+\left(\frac{1}{7} \times 7\right) \\
\left(-\frac{1}{7} \times 0\right)+\left(\frac{2}{7} \times 7\right)
\end{array}\right) .
$$

Equating corresponding entries.
$x=1$ and $y=2$

