## JUNE 2007 CXC MATHEMATICS GENERAL PROFICIENCY (PAPER 2)

## Section I

1. a. Required To Calculate: $(3.7)^{2}-(6.24 \div 1.3)$ in exact form.

Calculation:

$$
\begin{aligned}
(3.7)^{2}-(6.24 \div 1.3) & =13.69-4.8 \\
& =8.89 \text { (in exact form) }
\end{aligned}
$$

b. Data: School of 1200 students with teacher : student ratio 1:30.
(i) Required To Calculate: The number of teachers at the school. Calculation:
Let no. of teachers $=x$

$$
\begin{aligned}
x: 1200 & =1: 30 \\
\frac{x}{1200} & =\frac{1}{30} \\
30 x & =1200 \\
x & =40
\end{aligned}
$$

The number of teachers $=40$.
(ii) Data: $\frac{2}{5}$ of the students own personal computers.

Required To Calculate: No. of students not owning personal computers. Calculation:
$\frac{2}{5}$ of the students own personal computers.
Fraction who do not own personal computers $=1-\frac{2}{5}$

$$
=\frac{3}{5}
$$

No. of students who do not personal computers $=\frac{3}{5} \times 1200$

$$
=720
$$

(iii) Data: 30\% of the students who own computers also own play stations.

Required To Calculate: Fraction of students who own play stations.
Fraction who also own play stations $=30 \%$ of $\frac{2}{5}$

$$
\begin{gathered}
=\frac{30}{100} \times \frac{2}{5} \\
=\frac{3}{25}
\end{gathered}
$$

(in its lowest terms)
2. a. Data: $a * b=a b-\frac{b}{a}$
(i) Required To Calculate: $4 * 8$ Calculation:

$$
\begin{aligned}
4 * 8 & =(4 \times 8)-\frac{8}{4} \\
& =32-2 \\
& =30
\end{aligned}
$$

(ii) Required To Calculate: $2 *(4 * 8)$

## Calculation:

$$
\begin{aligned}
2 *(4 * 8) & =2 * 30 \\
& =(2 \times 30)-\frac{30}{2} \\
& =60-15 \\
& =45
\end{aligned}
$$

b. Required To Simplify: $\frac{5 p}{3 q} \div \frac{4 p^{2}}{q}$

## Solution:

$$
\begin{aligned}
\frac{5 p}{3 q} \div \frac{4 p^{2}}{q} & =\frac{5 p}{3 q} \times \frac{q}{4 p^{2}} \\
& =\frac{5}{12 p}(\text { in its lowest form })
\end{aligned}
$$

c. Data: Stadium with section A seats $\$ a$ each and section $B$ seats $\$ b$ each.
(i) Required To Find: Equations in $a$ and $b$ for the information given.

Solution:
For Johanna
5 section A and 3 section B cost $\$ 105$.
Hence,

$$
\begin{align*}
& (5 \times a)+(3 \times b)=105 \\
& 5 a+3 b=105 \ldots(1) \tag{1}
\end{align*}
$$

For Raiyah
4 section A seats and 1 section B seat cost $\$ 63$.
Hence,

$$
\begin{aligned}
& (4 \times a)+(1 \times b)=63 \\
& 4 a+b=63 \ldots(2)
\end{aligned}
$$

(ii) Required To Calculate: a and b

## Calculation:

$5 a+3 b=105 \ldots$ (1)
$4 a+b=63 \ldots$ (2)
From (2)
$b=63-4 a$
Substitute in (1)

$$
\begin{aligned}
5 a+3(63-4 a) & =105 \\
5 a+189-12 a & =105 \\
189-7 a & =105 \\
84 & =7 a \\
a & =12
\end{aligned}
$$

When $a=12$

$$
\begin{aligned}
b & =63-4(12) \\
& =63-48 \\
& =15
\end{aligned}
$$

Hence, when $a=12$ and $b=15$.
3. a. Data: Venn diagram showing the games played by members of a club.

(i) (a) Required To State: Game(s) played by Leo. Solution:
Leo belongs to both $T$ and $H$. Hence, Leo plays both tennis $(T)$ and hockey $(H)$.
(b) Required To State: Game(s) played by Mia. Solution:
Mia belongs to all sets $H, S$ and $T$. Therefore, Mia plays hockey $(H)$, squash $(S)$ and tennis $(T)$.
(c) Required To State: Game(s) played by Neil. Solution:
Neil belongs to the set $H$ only. Hence, Neil plays hockey $(H)$ only.
(ii) Required To Describe: The members of $H^{\prime} \cap S$. Solution:

$\therefore H^{\prime} \cap S$ describe the members who play squash $(S)$ and tennis $(T)$ only.
b. (i) Required To Construct: $\triangle P Q R$ with $Q R=8.5 \mathrm{~cm}, P Q=6 \mathrm{~cm}$ and $P R=7.5 \mathrm{~cm}$ and the line $P T$ such that $P T$ is perpendicular to $Q R$ and meets $Q R$ at $T$.

## Solution:


(ii) (a) Required To State: Size of $P \hat{Q} R$

Solution:
$P \hat{Q} R=59^{\circ}$ (by measurement)
(b) Required To State: Length of $P T$ Solution: $P T=5.2 \mathrm{~cm}$ (by measurement)
4. a. Data: Diagram of a golf course map with a scale of 1:4000.
(i) Required To Find: Distance from South Gate to east Gate. Solution:
Distance from South Gate to East Gate $=3 \mathrm{~cm}$ (from map)

$$
\begin{aligned}
& =3 \times 4000 \mathrm{~cm} \\
& =\frac{3 \times 4000}{100} \mathrm{~m} \\
& =120 \mathrm{~m}(\text { to the nearest } \mathrm{m})
\end{aligned}
$$

(ii) Required To Find: Distance from North Gate to South Gate. Solution:


Distance from North Gate to South Gate is exactly

$$
\begin{aligned}
& =\sqrt{(5)^{2}+(3)^{2}} \quad \text { (by Pythagoras' Theorem) } \\
& =\sqrt{34}
\end{aligned}
$$

$$
\therefore \text { Actual distance }=\frac{\sqrt{34} \times 4000}{100} \mathrm{~m}
$$

$$
=233.2 \mathrm{~m}
$$

$$
=233 \mathrm{~m} \text { to the nearest } \mathrm{m}
$$

(iii) Required To Find: Area on the ground represented by $1 \mathrm{~cm}^{2}$ on the map.

## Solution:



The area represented by $1 \mathrm{~cm}^{2}=\frac{1 \times 4000}{100}$ by $\frac{1 \times 4000}{100}$

$$
\begin{aligned}
& =(40 \times 40) \mathrm{m}^{2} \\
& =1600 \mathrm{~m}^{2}
\end{aligned}
$$

(iv) Required To Calculate: Actual area of the golf course.

## Calculation:

Since the map is not a definite shape, we have to estimate the area. Check 'whole squares' as $1 \mathrm{~cm}^{2}$. Blocks that are more than 'half square' are considered as 'whole squares' $=1 \mathrm{~cm}^{2}$. Blocks that are less than 'half square' are ignored.
No. of whole block/squares $=17$
$\therefore 17 \times 1=17 \mathrm{~cm}^{2}$
No. of blocks that are more than 'half square' $=10$
$\therefore 10 \times 1=10 \mathrm{~cm}^{2}$
Total estimated area $=17+10$

$$
=27 \mathrm{~cm}^{2}
$$

Actual estimated area $=27 \times 1600$

$$
=43200 \mathrm{~m}^{2}
$$

b. Data: Diagram illustrating a prism of length 15 cm , volume $960 \mathrm{~cm}^{3}$ and has a square cross-section $A B C D$.

(i) Required To Calculate: Length of $A B$.

Calculation:
Area of cross-section $A B C D \times$ Length of $15 \mathrm{~cm} \equiv$ Volume of $960 \mathrm{~cm}^{3}$
Area of $A B C D=\frac{960}{15}$

$$
=64 \mathrm{~cm}^{2}
$$

Length of $A B=\sqrt{64} \mathrm{~cm}$

$$
=8 \mathrm{~cm}
$$

(ii) Required To Calculate: Total surface area of the prism.

Calculation:
Surface area of the 2 square faces $=64 \times 2$

$$
=128 \mathrm{~cm}^{2}
$$

Area of the 4 rectangular faces $=(8 \times 15) \times 4$

$$
=480 \mathrm{~cm}^{2}
$$

$\therefore$ Total surface area $=128+480$

$$
=608 \mathrm{~cm}^{2}
$$

5. Data: Variables $x$ and $y$ where $y$ varies inversely as the square of $x$.
a. Required To Find: Equation in $x, y$ and $k$ to represent the inverse variation.

Solution:
$y \propto \frac{1}{x^{2}}$
$y=k \times \frac{1}{x^{2}}(k$ is the constant of variation $)$
$y=\frac{k}{x^{2}}$
b. Data: Table of values of $x$ and corresponding values of $y$.
(i) Required To Calculate: $k$

Calculation:
From the data $x=3$ when $y=2$.

$$
\begin{aligned}
2 & =\frac{k}{(3)^{2}} \\
k & =2 \times(3)^{2} \\
& =18
\end{aligned}
$$

and
$y=\frac{18}{x^{2}}$
(ii) Data: $x=1.8$

## Required To Calculate: $r$ <br> Calculation:

$$
\begin{aligned}
y & =\frac{18}{(1.8)^{2}} \\
& =5.55 \\
\therefore r & =5.5 \underline{5} \\
& =5.6 \text { ( to } 1 \text { decimal place })
\end{aligned}
$$

(iii) Data: $y=8$

Required To Calculate: $f$
Solution:

$$
\begin{aligned}
8 & =\frac{18}{x^{2}} \\
x^{2} & =\frac{18}{8} \\
x^{2} & =2.25 \\
x & =\sqrt{2.25} \\
x & = \pm 1.5 \\
\therefore f & = \pm 1.5
\end{aligned}
$$

c. Required To Find: Equation of the straight line passing through $(4,7)$ and which is parallel to $y=2 x+3$.
Solution:


The line $y=2 x+3$ is of the form $y=m x+c$ where $m=2$ is the gradient.
The gradient of the required line is 2 .
(Parallel lines have the same gradient).
Equation of the required line is

$$
\begin{aligned}
\frac{y-7}{x-4} & =2 \\
y-7 & =2(x-4) \\
y-7 & =2 x-8 \\
y & =2 x-1
\end{aligned}
$$

6. a. Data: Diagram showing $L^{\prime} M^{\prime} N^{\prime}$, the enlargement of $L M N$.
(i) (a) Required To Find: Scale factor for the enlargement. Solution:
$\frac{\text { Image length }}{\text { Object length }}=$ scale factor
$\frac{L^{\prime} M^{\prime}}{L M}$
From the diagram
$L=(1,4), M=(2,2), L^{\prime}=(2,8)$ and $M^{\prime}=(4,4)$
Length of $L M=\sqrt{(2-1)^{2}+(2-4)^{2}}$
$=\sqrt{(1)^{2}+(-2)^{2}}$
$=\sqrt{5}$

Length of $L^{\prime} M^{\prime}=\sqrt{(4-2)^{2}+(4-8)^{2}}$

$$
=\sqrt{(2)^{2}+(-4)^{2}}
$$

$$
=\sqrt{20}
$$

$\therefore$ Scale factor $=\frac{\sqrt{20}}{\sqrt{5}}$
$=\frac{\sqrt{4} \sqrt{5}}{\sqrt{5}}$
$=\sqrt{4}$
$=2$
(b) Required To Find: Coordinates of the centre of enlargement. Solution:
$L^{\prime} L, M^{\prime} M$ and $N^{\prime} N$ when produced backwards intersect at the same point $O$.
$\therefore$ The centre of enlargement is $(0,0)$.

(ii) Data: $L^{\prime \prime} M^{\prime \prime} N^{\prime \prime}$ is the image $L M N$ under a reflection in the line $y=-x$. Required To Draw: The triangle $L^{\prime \prime} M^{\prime \prime} N^{\prime \prime}$.
Solution:
The matrix that identifies a reflection in the line $y=-x$ is $\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$.
$\therefore L M N \xrightarrow{\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)} L^{\prime \prime} M^{\prime \prime} N^{\prime \prime}$
$\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)\left(\begin{array}{ccc}L & M & N \\ 1 & 2 & 4 \\ 4 & 2 & 3\end{array}\right)=\left(\begin{array}{ccc}L^{\prime \prime} & M^{\prime \prime} & N^{\prime \prime} \\ -4 & -2 & -3 \\ -1 & -2 & -4\end{array}\right)$
$\therefore L^{\prime \prime}=(-4,-1), M^{\prime \prime}=(-2,-2)$ and $N^{\prime \prime}=(-3,-4)$

b. Data: Diagram illustrating three towns $P, Q$ and $R$, bearings and relative distances.

(i) Required To Calculate: Length $P R$.

## Calculation:

$$
\begin{aligned}
P \hat{Q} R & =90^{\circ}-70^{\circ} \\
& =20^{\circ} \\
P R^{2} & =(5)^{2}+(10)^{2}-2(5)(10) \cos 20^{\circ} \quad(\text { Cosine Rule }) \\
& =25+100-100 \cos 20^{\circ} \\
& =31.031 \\
P R & =\sqrt{31.031} \\
& =5.57 \mathrm{~km} \\
& =5.6 \mathrm{~km}(\text { to one decimal place })
\end{aligned}
$$

(ii) Required To Calculate: The bearing of $R$ from $P$. Calculation:

$Q P$ makes an angle of $70^{\circ}$ with the South line. Hence, $R P$ makes $142^{\circ}-70^{\circ}=72^{\circ}$ with the South line. $P R$ makes $90^{\circ}-72^{\circ}=18^{\circ}$ with the East line.
The bearing of $R$ from $P=90^{\circ}+18^{\circ}$

$$
=108^{\circ}
$$

7. Data: Results of the time taken by 32 students in a race.
a. Required To Complete: The frequency table to represent the data given.

## Solution:

THE TABLE OF VALUES FOR THE CONTINUOUS VARIABLE

| Time in <br> seconds, $\boldsymbol{t}$ | L.C.B U.C.B | Mid-class <br> Interval <br> L.C.B+U.C.B | Frequency | Points to plot |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 2 |  | $(47,0)$ |
| $50-54$ | $49.5 \leq t<54.5$ | $\frac{49.5+54.5}{2}=52$ | 3 | $(52,3)$ |
| $55-59$ | $54.5 \leq t<59.5$ | $\frac{54.5+59.5}{2}=57$ | 4 | $(57,4)$ |
| $60-64$ | $59.5 \leq t<64.5$ | $\frac{59.5+64.5}{2} 62$ | 6 | $(62,6)$ |
| $65-69$ | $64.5 \leq t<69.5$ | $\frac{64.5+69.5}{2}=67$ | 3 | $(67,3)$ |
| $70-74$ | $69.5 \leq t<74.5$ | $\frac{69.5+74.5}{2}=72$ | 7 | $(72,7)$ |
| $75-79$ | $74.5 \leq t<79.5$ | $\frac{74.5+79.5}{2}=77$ | 4 | $(77,4)$ |
| $80-84$ | $79.5 \leq t<84.5$ | $\frac{79.5+84.5}{2}=82$ | 5 | $(82,5)$ |
|  |  |  |  | $(87,0)$ |

A frequency polygon must start from the horizontal axis so by extrapolation the points $(47,0)$ are obtained to start and $(87,0)$ to end the frequency polygon.
b. Required To Find: Range of the data.

Solution:
From the raw data,
Highest score $=83$
Lowest score $=51$

$$
\begin{aligned}
\therefore \text { Range } & =83-51 \\
& =32
\end{aligned}
$$

c. Required To Draw: Frequency polygon for the data using a scale of 2 cm to represent 5 seconds on the horizontal axis and 1 cm to represent 1 student on the vertical axis.

## Solution:


d. Required To Calculate: Probability that a student from the class will qualify for the finals.

## Solution:

$P($ student qualifies for the finals $)=\frac{\text { No.of students finishing race before } 60 \text { seconds }}{\text { Total no. of participants }}$

$$
\begin{aligned}
& =\frac{3+4}{32} \\
& =\frac{7}{32}
\end{aligned}
$$

8. Data: Diagram showing a whole unit rectangle divided into seven smaller parts $A-G$.
a. Required To Complete: The table showing what fraction of the rectangle each part represents.
Solution:
Rectangle is 3 units $\times 12$ units $=36$ square units.

| Part | Fraction | Perimeter to 1 decimal place |
| :---: | :---: | :---: |
| A | $\frac{\text { Area of } A}{36}=\frac{3 \times 3}{36}=\frac{9}{36}=\frac{1}{4}$ | $4 \times 3=12$ |
| B | $\frac{\text { Area of } B}{36}=\frac{2 \times 3}{36}=\frac{6}{36}=\frac{1}{6}$ | $2(2+3)=10$ |
| C | $\frac{1}{24}$ | $3+1+\sqrt{10}=7.2($ to 1 dp$)$ |
| D | $\frac{\text { Area of } D}{36}=\frac{\frac{1}{2}(2+3) \times 3}{36}=\frac{15}{72}=\frac{5}{24}$ | $2+3+3+\sqrt{10}=11.2(\mathrm{tol}$ <br> dp) |
| $E$ | $\frac{\text { Area of } E}{36}=\frac{\frac{1}{2}(1+3) \times 2}{36}=\frac{4}{36}=\frac{1}{9}$ | $1+2+3+\sqrt{8}=8.8 \text { (to } 1 \mathrm{dp} \text { ) }$ |
| $F$ | $\frac{\text { Area of } F}{36}=\frac{\frac{1}{2}(2+4) \times 2}{36}=\frac{6}{36}=\frac{1}{6}$ | $2+2+4+\sqrt{8}=10.8($ to 1 dp$)$ |
| G | $\frac{1}{18}$ | $2(1+2)=6$ |

b. Required To Write: The parts in order of the size of their perimeters.

Solution:
In order of the size of the perimeters, with the smallest written first $\begin{array}{lllllll}G & C & E & B & F & D & A\end{array}$
c. Data: The area of $G$ is 2 square units. $E, F$ and $G$ are rearranged to form a trapezium.
(i) Required To Find: The area of the trapezium.

## Solution:

Area of the trapezium $=\frac{1}{2}(\{(2+1+1)+(4+1+3)\} \times 2)$

$$
\begin{aligned}
& =\frac{1}{2}(4+8) \times 2 \\
& =12 \text { square units }
\end{aligned}
$$

(ii) Required To Sketch: The trapezium.

Solution:


## Section II

9. a. Data: $g(x)=\frac{2 x+1}{5}$ and $f(x)=x+4$
(i) Required To Calculate: $g(-2)$

## Calculation:

$$
\begin{aligned}
g(-2) & =\frac{2(-2)+1}{5} \\
& =\frac{-4+1}{5} \\
& =-\frac{3}{5}
\end{aligned}
$$

(ii) Required To Find: Expression for $g f(x)$ in its simplest form. Solution:

$$
\begin{aligned}
g f(x) & =\frac{2(x+4)+1}{5} \\
& =\frac{2 x+8+1}{5} \\
& =\frac{2 x+9}{5}
\end{aligned}
$$

(iii) Required To Find: $g^{-1}(x)$

## Solution:

$$
g(x)=\frac{2 x+1}{5}
$$

Let

$$
\begin{aligned}
y & =\frac{2 x+1}{5} \\
5 y & =2 x+1 \\
5 y-1 & =2 x \\
x & =\frac{5 y-1}{2}
\end{aligned}
$$

Replace $y$ by $x$

$$
g^{-1}(x)=\frac{5 x-1}{2}
$$

b. Data: Diagram of a rectangle with length $(2 x-1) \mathrm{cm}$ and width $(x+3) \mathrm{cm}$.

(i) Required To Find: Expression for area of the rectangle. Solution:
Area of rectangle $=(2 x-1)(x+3)$

$$
\begin{aligned}
& =2 x^{2}-x+6 x-3 \\
& =2 x^{2}+5 x-3
\end{aligned}
$$

is of the form $a x^{2}+b x+c$, where $a=2, b=5$ and $c=-3$.
(ii) Data: Area of rectangle $=294 \mathrm{~cm}^{2}$

Required To Calculate: $x$
Calculation:
Area $=294$ cm $^{2}$
Hence,

$$
\begin{aligned}
2 x^{2}+5 x-3 & =294 \\
2 x^{2}+5 x-297 & =0 \\
(2 x+27)(x-11) & =0 \\
x & =-13 \frac{1}{2} \text { or } 11
\end{aligned}
$$

$x \neq-\mathrm{ve}, \therefore x=11$ only.
(iii) Required To Find: The dimensions of the rectangle.

Solution:


Hence, the rectangle is 21 cm long and 14 cm wide, as illustrated.
10. Data: The conditions for packaging of packets of gold and silver stars.
a. Required To Find: Inequalities to represent the conditions given.

## Solution:

(2) Each packet must have at least 15 silver stars.

No. of silver stars is $y$, which must be at least 15 . Hence, $y \geq 15$
(3) Total number of stars in each packet must not be more than 60.

Total number of gold and silver stars is $x+y$, must not be more than 60 .
Hence,

$$
x+y \leq 60
$$

b. Required To Describe: The condition $x<2 y$ in words.

## Solution:

$x<2 y$
The number of gold stars is less than twice the number of silver stars.

$$
x \quad<\quad 2 \mathrm{x} y
$$

c. Required To Draw: The graphs for all 4 inequalities

## Solution:

The line $x=20$ is a straight vertical line.
The region which satisfies $x \geq 20$ is

$x \geq 20$
The line $y=15$ is a horizontal straight line.
The region which satisfies $y \geq 15$ is


Obtaining 2 points on the line $x+y=60$.
When $x=0$

$$
\begin{aligned}
0+y & =60 \\
y & =60
\end{aligned}
$$

The line $x+y=60$ passes through the point $(0,60)$.
When $y=0$

$$
\begin{aligned}
x+0 & =60 \\
x & =60
\end{aligned}
$$

The line $x+y=60$ passes through the point $(60,0)$.


The region with the smaller angle represents the $\leq$ region.


$$
\begin{array}{|l|l}
\mathrm{x}_{\mathrm{x}} & \mathrm{x} \\
\mathrm{x} & \mathrm{x} \\
\mathrm{x}
\end{array} \quad x+y \leq 60
$$

Obtaining 2 points on the line $x=2 y$ or $y=\frac{1}{2} x$.
The line $y=\frac{1}{2} x$ passes through the origin $(0,0)$.
When $x=60 \quad y=\frac{1}{2}(60)$

$$
=30
$$

The line $y=\frac{1}{2} x$ passes through the point $(60,30)$.


The region with the larger angle represents the $\geq$ region.
The region which satisfies $y \quad$ or $x<2 y$ is


The region which satisfies all four inequalities is the area in which all four shaded regions overlap.


d. Data: Table showing the number of gold and silver stars which three packets contain.
Required To Determine: Which of the 3 packets satisfy all the conditions.
Solution:
The feasible region that satisfies all four inequalities is shown by $P Q R S$ on the diagram.
For $A$
When $x=25$ and $y=20$, the point $A,(25,20)$ lies within $P Q R S$ and so packet $A$ satisfies all the conditions.

For $B$
When $x=35$ and $y=15$, the point $B(35,15)$ does not lie within $P Q R S$ and so packet $B$ does not satisfy all the conditions.

For $C$
When $x=30$ and $y=25$, the point $C(30,25)$ lies within $P Q R S$ and so packet $C$ satisfies all the conditions.
11. a. $\quad$ Data: $\sin \theta=\frac{\sqrt{3}}{2}$
(a) Required To Calculate: $\cos \theta$

Solution:
Note: The question should have indicated whether $\theta$ is acute or obtuse.
Assuming $\theta$ is acute.


$$
\begin{aligned}
\operatorname{adj} & =\sqrt{(2)^{2}-(\sqrt{3})^{2}} \\
& = \pm 1
\end{aligned}
$$

In this case $\mathrm{adj}=+1$

$$
\begin{aligned}
\cos \theta & =\frac{+1}{+2} \\
& =\frac{1}{2}
\end{aligned}
$$

(b) Required To Calculate: $\tan \theta$ Solution:

$$
\begin{aligned}
\tan \theta & =\frac{+\sqrt{3}}{+1} \\
& =\sqrt{3}
\end{aligned}
$$

Assuming $\theta$ is obtuse when $\sin \theta=\frac{\sqrt{3}}{2}$.


In this case adj $=\sqrt{1}$

$$
= \pm 1
$$

$$
=-1
$$

(i)
(a) $\quad \cos \theta=\frac{-1}{+2}$

$$
=-\frac{1}{2}
$$

(b) $\quad \tan \theta=\frac{+\sqrt{3}}{-1}$

$$
=-\sqrt{3}
$$

(ii) Required To Find: $\frac{\sin \theta}{\tan \theta}$

## Solution:

Assuming $\theta$ is acute.

$$
\begin{aligned}
\frac{\sin \theta}{\tan \theta} & =\frac{\frac{\sqrt{3}}{2}}{\sqrt{3}} \\
& =\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}} \\
& =\frac{1}{2} \text { in exact form }
\end{aligned}
$$

Assuming $\theta$ is obtuse.

$$
\begin{aligned}
\frac{\sin \theta}{\tan \theta} & =\frac{\frac{\sqrt{3}}{2}}{-\sqrt{3}} \\
& =-\frac{1}{2}
\end{aligned}
$$

b. This part of the question has not been solved as it involves Earth Geometry which has since been removed from the syllabus.
12. a. Data: Diagram with centre $X$ and $X Y=6 \mathrm{~cm}$

(i) Required To Calculate: $Y \hat{X} Z$ Calculation:
Total angle at the centre of a circle $=360^{\circ}$

$$
\begin{aligned}
\therefore Y \hat{X} Z & =\frac{360^{\circ}}{8} \\
& =45^{\circ}
\end{aligned}
$$

(ii) Required To Calculate: Area of $\triangle Y X Z$

Calculation:

$$
\text { Area of } \begin{aligned}
\triangle Y X Z & =\frac{1}{2}(6)(6) \sin 45^{\circ} \\
& =12.7 \underline{3} \mathrm{~cm}^{2} \\
& =12.7 \mathrm{~cm}^{2} \quad(\text { to } 1 \text { decimal place })
\end{aligned}
$$

(iii) Required To Calculate: Area of the octagon.

Calculation:
$X Y Z$ represents $\frac{1}{8} \mathrm{x}$ (the area of the octagon).
Area of the octagon $=8 \times 12.73$

$$
\begin{aligned}
& =101.8 \underline{4} \\
& =101.8 \mathrm{~cm}^{2}
\end{aligned}
$$

b. Data: Diagram of a circle centre $O . L M$ is a tangent to the circle PQRST at $T$ and $M \hat{T} S=23^{\circ}$.

(i) Required To Calculate: $T \hat{P} Q$

Calculation:
$T \hat{P} Q=90^{\circ}$
(Angle in a semi-circle is a right angle).
(ii) Required To Calculate: $M \hat{T Q}$

## Calculation:

$M \hat{T} O=90^{\circ}$
(Angle made by a tangent to a circle and a radius, at the point of contact = $90^{\circ}$ ).
$T O Q$ is a straight line.
$\therefore M \hat{T} Q=90^{\circ}$
(iii) Required To Calculate: $T \hat{Q} S$

## Calculation:

$T \hat{Q} S=23^{\circ}$
(Angle made by a tangent to a circle and a chord, at the point of contact = angle in the alternate segment).
(iv) Required To Calculate: $S \hat{R} Q$

## Calculation:

$$
\begin{aligned}
S \hat{T} Q & =90^{\circ}-23^{\circ} \\
& =67^{\circ} \\
S \hat{R} Q & =180^{\circ}-67^{\circ} \\
& =113^{\circ}
\end{aligned}
$$

(Opposite angles in a cyclic quadrilateral are supplementary).
13. Data: Vector diagram with $\overrightarrow{O K}=\underline{k}$ and $\overrightarrow{O M}=\underline{m}$.
a. Required To Sketch: Diagram of the information given.

Solution:

b.
$R$ is the midpoint of $\overrightarrow{O K}$.

$$
\begin{aligned}
\therefore \overrightarrow{O R} & =\overrightarrow{R K} \\
& =\frac{1}{2} \underline{k} \\
\overrightarrow{O S} & =\frac{1}{3} \overrightarrow{O M} \\
\therefore \overrightarrow{O S} & =\frac{1}{3} \underline{m}
\end{aligned}
$$

And

$$
\overrightarrow{S M}=\frac{2}{3} \underline{m}
$$

(i) Required To Express: $\overrightarrow{M K}$ in terms of $\underline{k}$ and $\underline{m}$. Solution:

$$
\begin{aligned}
\overrightarrow{M K} & =\overrightarrow{M O}+\overrightarrow{O K} \\
& =-\underline{m}+\underline{k} \\
& =\underline{k}-\underline{m}
\end{aligned}
$$

(ii) Required To Express: $\overrightarrow{R M}$ in terms of $\underline{k}$ and $\underline{m}$. Solution:

$$
\begin{aligned}
\overrightarrow{R M} & =\overrightarrow{R O}+\overrightarrow{O M} \\
& =-\frac{k}{2}+\underline{m}
\end{aligned}
$$

(iii) Required To Express: $\overrightarrow{K S}$ in terms of $\underline{k}$ and $\underline{m}$.

Solution:

$$
\begin{aligned}
\overrightarrow{K S} & =\overrightarrow{K O}+\overrightarrow{O S} \\
& =-\underline{k}+\frac{1}{3} \underline{m}
\end{aligned}
$$

(iv) Required To Express: $\overrightarrow{R S}$ in terms of $\underline{k}$ and $\underline{m}$.

Solution:

$$
\begin{aligned}
\overrightarrow{R S} & =\overrightarrow{R O}+\overrightarrow{O S} \\
& =-\frac{k}{2}+\frac{1}{3} \underline{m}
\end{aligned}
$$

c. Required To Prove: $R S$ is parallel to $K L$.

Proof:

$$
\begin{aligned}
\overrightarrow{R L} & =\frac{1}{2} \overrightarrow{R M} \\
& =\frac{1}{2}\left(-\frac{k}{2}+\underline{m}\right) \\
\overrightarrow{K L} & =\overrightarrow{K R}+\overrightarrow{R L} \\
& =-\frac{k}{2}+\frac{1}{2}\left(-\frac{k}{2}+\underline{m}\right) \\
& =-\frac{3}{4} \underline{k}+\frac{1}{2} \underline{m} \\
& =\frac{3}{2}\left(-\frac{k}{2}+\frac{1}{3} \underline{m}\right) \\
& =\frac{3}{2} \overrightarrow{R S} \\
\therefore & \overrightarrow{K L} \text { is a scalar multiple, }\left(\frac{3}{2}\right), \text { of } \overrightarrow{R S}, \text { hence } \overrightarrow{K L} \text { and } \overrightarrow{R S} \text { are parallel. }
\end{aligned}
$$

14. a. Data: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), B=\left(\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right)$ and $C=\left(\begin{array}{rr}14 & 0 \\ -9 & 5\end{array}\right)$
(i) Required To Calculate: 3 A Calculation:

$$
\begin{aligned}
3 A & =3\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& =\left(\begin{array}{ll}
3 a & 3 b \\
3 c & 3 d
\end{array}\right)
\end{aligned}
$$

(ii) Required To Calculate: $B^{-1}$

Calculation:
Det $B=(5 \times 2)-(3 \times 3)$

$$
\begin{aligned}
& =10-9 \\
& =1 \\
B^{-1} & =\frac{1}{1}\left(\begin{array}{cc}
2 & -(3) \\
-(3) & 5
\end{array}\right) \\
& =\left(\begin{array}{rr}
2 & -3 \\
-3 & 5
\end{array}\right)
\end{aligned}
$$

(iii) Required To Calculate: $3 A+B^{-1}$ Calculation:

$$
\begin{aligned}
3 A+B^{-1} & =\left(\begin{array}{ll}
3 a & 3 b \\
3 c & 3 d
\end{array}\right)+\left(\begin{array}{rr}
2 & -3 \\
-3 & 5
\end{array}\right) \\
& =\left(\begin{array}{ll}
3 a+2 & 3 b-3 \\
3 c-3 & 3 d+5
\end{array}\right)
\end{aligned}
$$

(iv) Data: $3 A+B^{-1}=C$

Required To Calculate: $a, b, c$ and $d$.
Solution:
$3 A+B^{-1}=C$
$\left(\begin{array}{ll}3 a+2 & 3 b-3 \\ 3 c-3 & 3 d+5\end{array}\right)=\left(\begin{array}{rr}14 & 0 \\ -9 & 5\end{array}\right)$
Equating corresponding entries.

$$
\begin{array}{rlrl}
3 a+2 & =14 & 3 b-3 & =0 \\
3 a & =12 & 3 b & =3 \\
a & =4 & b & =1 \\
3 c-3 & =-9 & 3 d+5 & =5 \\
3 c & =-6 & 3 d & =0 \\
c & =-2 & d & =0
\end{array}
$$

b. Data: Diagram showing a parallelogram $E F G H$ and its images after undergoing 2 successive transformations.
(i) (a) Required To Describe: In words the transformation $J$. Solution:
$E F G H$ is mapped onto $E^{\prime} F^{\prime} G^{\prime} H^{\prime}$ by a vertical shift of 4 units downwards.
$\therefore J$ describes a translation $T=\binom{0}{-4}$.

(b) Required To Describe: In words transformation $K$. Solution:

$E^{\prime} O E^{\prime \prime}, F^{\prime} O F^{\prime \prime}$, etc are all $180^{\circ}$ and pass through $O$. Hence, $E^{\prime} F^{\prime} G^{\prime} H^{\prime}$ is mapped onto $E^{\prime \prime} F^{\prime \prime} G^{\prime \prime} H^{\prime \prime}$ by a rotation of $180^{\circ}$ about $O$ (clockwise or anti-clockwise), which describes $K$.
(ii) (a) Required To Find: Matrix which represents $J$. Solution:

$$
J=\binom{0}{-4}
$$

(b) Required To Find: Matrix which represents $K$. Solution:

$$
K=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

(iii) Data: $P(6,2)$ is mapped onto $P^{\prime}$ by $J$.

Required To Find: Coordinates of $P^{\prime}$. Solution:

$$
\begin{gathered}
P \xrightarrow{J} P^{\prime} \\
\binom{6}{2} \xrightarrow{\binom{0}{-4}} P^{\prime} \\
\binom{6+0}{2+(-4)}=\binom{6}{-2} \\
\therefore P^{\prime}=(6,-2)
\end{gathered}
$$

(iv) Data: $\mathrm{Q}(5,-4)$ is mapped onto $Q^{\prime}$ by $K$.

Required To Find: Coordinates of $Q^{\prime}$.
Solution:

$$
\begin{aligned}
& Q \xrightarrow{K} Q^{\prime} \\
& \binom{5}{-4} \xrightarrow{\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)} Q^{\prime} \\
& \left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)\binom{5}{-4}=\binom{(-1 \times 5)+(0 \times-4)}{(0 \times 5)+(-1 \times-4)} \\
& =\binom{-5}{4} \\
& \therefore Q^{\prime}=(-5,4)
\end{aligned}
$$

