JANUARY 2007 MATHEMATICS GENERAL PROFICIENCY (PAPER 2)

Section I

1. a. (i) Required To Calculate: 5.24(4-1.67)

Calculation:

$$
\begin{aligned}
5.24(4-1.67) & =5.24(2.33) \\
& =12.2 \underline{9} \quad \text { (exactly) } \\
& =12.2 \text { to } 1 \text { decimal place }
\end{aligned}
$$

(ii) Required To Calculate: $\frac{1.68}{1.5^{2}-1.45}$

Calculation:

$$
\begin{aligned}
\frac{1.68}{1.5^{2}-1.45} & =\frac{1.68}{2.25-1.45} \\
& =\frac{1.68}{0.8} \\
& =2.1 \text { (exactly) }
\end{aligned}
$$

b. Data: Aaron received 2 shares totaling $\$ 60$ from a sum shared in the ratio $2: 5$.

Required To Calculate: The sum of money.

Calculation:

Aaron's 2 shares total $\$ 60$

$$
\begin{aligned}
\therefore 1 \text { share } & \equiv \frac{\$ 60}{2} \\
& =\$ 30
\end{aligned}
$$

Total no. of shares $=2+5=7$
Sum that was shared altogether

$$
\begin{aligned}
& =\$ 30 \times 7 \\
& =\$ 210
\end{aligned}
$$

c. Data: Cost of gasoline is $\$ 10.40$ for 3 litres. All currency in $\$ E C$.
(i) Required To Calculate: Cost of 5 litres of gasoline.

Calculation:
If 3 litres of gasoline cost $\$ 10.40$
Then 1 litre of gasoline costs $\frac{\$ 10.40}{3}$
And 5 litres of gasoline cost $\frac{\$ 10.40}{3} \times 5$
$=\$ 17.333$
$=\$ 17.33$ to nearest cent
(ii) Required To Calculate: Volume of gasoline that can be bought with $\$ 50.00$.

Calculation:

$\$ 10.40$ affords 3 litres
$\$ 1.00$ will afford $\frac{3}{10.40}$ litres
$\$ 50.00$ will afford $\left(\frac{3}{10.40} \times 50.00\right)$ litres

$$
\begin{aligned}
& =14.4 \text { litres } \\
& =14 \text { litres to the nearest whole number }
\end{aligned}
$$

2. a. Data: $a=2, b=-3$ and $c=4$
(i) Required To Calculate: $a b-b c$

Calculation:

$$
\begin{aligned}
a b-b c & =2(-3)-(-3) 4 \\
& =-6+12 \\
& =6
\end{aligned}
$$

(ii) Required To Calculate: $b(a-c)^{2}$

Calculation:

$$
\begin{aligned}
b(a-c)^{2} & =-3(2-4)^{2} \\
& =-3(-2)^{2} \\
& =-3(4) \\
& =-12
\end{aligned}
$$

b. (i) Data: $\frac{x}{2}+\frac{x}{3}=5$

Required To Find: x where $x \in Z$
Solution:

$$
\begin{aligned}
& \frac{x}{2}+\frac{x}{3}=\frac{5}{1} \\
& \times 6 \\
& 6\left(\frac{x}{2}\right)+6\left(\frac{x}{3}\right)=6\left(\frac{5}{1}\right) \\
& 3 x+2 x=30 \\
& 5 x=30 \\
& x=6 \in Z
\end{aligned}
$$

OR

$$
\begin{aligned}
& \frac{x}{2}+\frac{x}{3}=5 \\
& \frac{3(x)+2(x)}{6}=5 \\
& \frac{5 x}{6}=5 \\
& \times 6 \quad \begin{aligned}
5 x & =30 \\
x & =6 \in Z
\end{aligned} \\
& \\
&
\end{aligned}
$$

(ii) Data: $4-x \leq 13$

Required To Find: x where $x \in Z$
Solution:

$$
\begin{aligned}
4-x & \leq 13 \\
-x & \leq 13-4 \\
\times-1 & \\
x & \geq-9
\end{aligned}
$$

That is $x=\{-9,-8,-7, \ldots, x \in Z\}$
c. Data: 1 muffin costs $\$ m$ and 3 cupcakes cost $\$ 2 m$
(i) (a) Required To Find: Cost of five muffins in terms of m. Solution:
1 muffin costs $\$ m$
5 muffins costs $\$(m \times 5)$

$$
=\$ 5 m
$$

(b) Required To Find: Cost of six cupcakes in terms of m.

Solution:
If 3 cupcakes cost $\$ 2 m$
Then 1 cupcake costs $\$ \frac{2 m}{3}$
And 6 cupcakes cost $\$ \frac{2 m}{3} \times 6$

$$
=\$ 4 m
$$

(ii) Required To Find: An equation for the total cost of 5 muffins and 6 cupcakes is $\$ 31.50$.

Solution:

$\$ 5 m+\$ 4 m=\$ 9 m$
Hence, $\$ 9 m=\$ 31.50$

$$
9 m=31.50
$$

3. a.
 (i) Data:

Required To Describe: The shaded region using set notation.

Solution:

The region shaded is all of sets A and B, that is $A \cup B$.
(ii) Data:

Required To Describe: The shaded region using set notation.

Solution:

The region shaded is the region in U except $A \cup B$, that is $(A \cup B)^{\prime}$.

(iii) Data:

Required To Describe: The shaded region using set notation.
Solution:
The region shaded in the set A only. Hence the shaded region is A.
b. Data: $U=\{1,2,3,4,5,6,7,8,9,10\}$
$P=\{$ Prime numbers $\}$
$Q=\{$ Odd numbers $\}$
Required To Draw: A Venn diagram to represent the information given.
Solution:

$$
\begin{aligned}
& P=\{2,3,5,7\} \\
& Q=\{1,3,5,7,9\}
\end{aligned}
$$

c. Data: Venn diagram illustrating the number of elements in each region.

(i) Required To Find: No. of elements in $A \cup B$. Solution:

(ii) Required To Find: No. of elements in $A \cap B$. Solution:

$$
n(A \cap B)=4
$$

(iii) Required To Find: No of elements in $(A \cap B)^{\prime}$.

$$
\begin{aligned}
& \text { Solution: } \\
& \begin{aligned}
n(A \cap B)^{\prime} & =10+3+8 \\
& =21
\end{aligned}
\end{aligned}
$$

(iv) Required To Find: No. of elements in U. Solution:

4. a. (i) Required To Construct: $\triangle A B C$ with $B C=6 \mathrm{~cm}$ and $A B=A C=8 \mathrm{~cm}$. Solution:

(ii) Required To Construct: $A D$ such that $A D$ meets $B C$ at D and is perpendicular to $B C$.

Solution:

(iii) (a) Required To Find: Length of $A D$. Solution:
$A D=7.3 \mathrm{~cm}$ (by measurement)
(b) Required To Find: Size of $A \hat{B} C$

Solution:
$A \hat{B} C=68^{\circ}$ (by measurement)
b. Data: $P=(2,4)$ and $Q=(6,10)$

(i) Required To Calculate: Gradient of $P Q$. Calculation:

$$
\begin{aligned}
\text { Gradient of } \begin{aligned}
P Q & =\frac{10-4}{6-2} \\
& =\frac{6}{4} \\
& =\frac{3}{2}
\end{aligned},=\text {. }
\end{aligned}
$$

(ii) Required To Calculate: Midpoint of $P Q$.

Calculation:

Let midpoint of $P Q$ be M.

$$
\begin{aligned}
M & =\left(\frac{2+6}{2}, \frac{4+10}{2}\right) \\
& =(4,7)
\end{aligned}
$$

5. a. Data: $f(x) \rightarrow 7 x+4$ and $g(x) \rightarrow \frac{1}{2 x}$
(i) Required To Calculate: $g(3)$

Calculation:

$$
\begin{aligned}
g(3) & =\frac{1}{2(3)} \\
& =\frac{1}{6}
\end{aligned}
$$

(ii) Required To Calculate: $f(-2)$

Calculation:

$$
\begin{aligned}
f(-2) & =7(-2)+4 \\
& =-14+4 \\
& =-10
\end{aligned}
$$

(iii) Required To Calculate: $f^{-1}(11)$

Calculation:

Let $y=7 x+4$
$y-4=7 x$
$\frac{y-4}{7}=x$
Replace y by x

$$
\begin{aligned}
& \therefore f^{-1}(x)=\frac{x-4}{7} \\
& \begin{aligned}
\therefore f^{-1}(11) & =\frac{11-4}{7} \\
& =\frac{7}{7} \\
& =1
\end{aligned}
\end{aligned}
$$

b. (i) $\quad x=5$

$$
A^{\prime \prime}=(1,2)
$$

(ii) $\quad B^{\prime \prime}=(3,2)$

$$
C^{\prime \prime}=(3,-1)
$$

(iii) Reflection in the line $y=4$
6. Data: Table showing a frequency distribution of scores of 100 students in an examination.
(i) Required To Complete: And modify the table given.

Solution:

Score (Discrete Variable)	U.C.B	Frequency	Cumulative Frequency	Points to Plot (U.C.B, C.F.)
				$(20,0)$
21-25	25	5	5	$(25,5)$
26-30	30	18	$18+5=23$	$(30,23)$
31-35	35	23	$23+23=46$	$(35,46)$
36-40	40	22	$22+46=68$	$(40,68)$
41-45	45	21	$21+68=89$	$(45,89)$
$46-50$	50	11	$11+89=100$	$(50,100)$
$\sum f=100$				

The point $(20,0)$ corresponding to an upper class boundary of 20 and a cumulative frequency value of 0 , obtained by checking 'backwards', is to be plotted, as the graph of cumulative frequency starts from the horizontal axis.
(ii) Data: Scale is 2 cm to represent 5 units on the horizontal axis and 2 cm to represent 10 units on the vertical axis.
Required To Plot: The cumulative frequency curve of the scores. Solution:

Cumulative Frequency Curve of Scores

(iii) Required To Find: Median score.

Solution:
From the cumulative frequency curve, the median score corresponds to a cumulative frequency value of $\frac{1}{2}(100)=50$ and reads as 36 on the horizontal axis.
\therefore Median score $=36$.
(iv) Required To Calculate: Probability a randomly chosen student has a score greater than 40.
Solution:
$P($ student chosen atrandon scores $>40)=\frac{\text { No.of students scoring }>40}{\text { Total no.of students }}$

$$
\begin{aligned}
& =\frac{21+11}{\sum f=100} \\
& =\frac{32}{100} \\
& =\frac{8}{25}
\end{aligned}
$$

7. a. Data: Prism of cross-sectional area $144 \mathrm{~cm}^{2}$ and length 30 cm .
(i) Required To Calculate: Volume of the prism.

Calculation:
Volume of prism $=$ Area of cross-section \times Length

$$
\begin{aligned}
& =144 \times 30 \mathrm{~cm}^{3} \\
& =4320 \mathrm{~cm}^{3}
\end{aligned}
$$

(ii) Required To Calculate: Total surface area of the prism.

Calculation:

Square of area $144 \mathrm{~cm}^{2}$

Cross-section is a square of area $144 \mathrm{~cm}^{2}$.

$$
\begin{aligned}
\therefore \text { Length } & =\sqrt{144 \mathrm{~cm}^{2}} \\
& =12 \mathrm{~cm}
\end{aligned}
$$

Area of front and back faces $=144 \times 2$

$$
=288 \mathrm{~cm}^{2}
$$

Area of L.H.S and R.H.S. rectangular faces $=2(12 \times 30)$

$$
=720 \mathrm{~cm}^{2}
$$

Area of top and base rectangular faces $=2(12 \times 30)$

$$
=720 \mathrm{~cm}^{2}
$$

Total surface area of the prism $=288+720+720$

$$
=1728 \mathrm{~cm}^{2}
$$

b. Data:

$M O N$ is a sector of a circle of radius 15 cm and $M \hat{O} N=45^{\circ}$.
(i) Required To Calculate: Length of minor arc $M N$. Calculation:
Length of arc $M N=\frac{45}{360} \times 2 \pi(15)$

$$
\begin{aligned}
& =11.77 \underline{5} \\
& =11.78 \mathrm{~cm} \text { to } 2 \text { decimal places }
\end{aligned}
$$

OR
Using
$s=r \theta$
$s=$ arc length, $r=$ radius and $\theta=$ angle in radians
$s=(15)(0.785)=11.775$
$s=11.78 \mathrm{~cm}$ to 2 decimal places
(ii) Required To Calculate: Perimeter of figure MON. Calculation:
Perimeter of $M O N=$ Arc length $M O N+$ Length of radius $O M+$ Length of radius $O N$

$$
=11.775+15+15
$$

$$
=41.775
$$

$$
=41.78 \text { to } 2 \text { decimal places }
$$

(iii) Required To Calculate: Area of figure $M O N$. Calculation:

$$
\begin{aligned}
\text { Area of sector } M O N= & \frac{45}{360} \times \pi(15)^{2} \\
= & 88.31 \underline{2} \\
= & 88.31 \mathrm{~cm}^{2} \text { to } 2 \text { decimal places } \\
& \mathbf{O R}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of sector } & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2}(15)^{2}(0.785) \\
& =88.31 \underline{2} \\
& =88.31 \mathrm{~cm}^{2} \text { to } 2 \text { decimal places }
\end{aligned}
$$

8. Data: Table showing the subdivision of an equilateral triangle.

Required To Complete: The table given.
Solution:

n	Result of each step	No. of triangles formed
0		
1		
2		

4| 65536
4| 16384
4| 4096
4| 1024
4| 256
$4 \mid 64$
4| 16
4| 4
1

Section II

9. a. Required To Factorise: (i) $2 p^{2}-7 p+3$, (ii) $5 p+5 q+p^{2}-q^{2}$

Factorising:

(i) $2 p^{2}-7 p+3$

$$
=(2 p-1)(p-3)
$$

(ii)

$$
\begin{aligned}
& 5 p+5 q+p^{2}-q^{2} \\
& =5(p+q)+(p-q)(p+q) \\
& =(p+q)\{5+(p-q)\} \\
& =(p+q)(5+p-q)
\end{aligned}
$$

b. Required To Expand: $(x+3)^{2}(x-4)$

Solution:
Expanding

$$
\begin{aligned}
(x+3)^{2}(x-4) & =(x+3)(x+3)(x-4) \\
& =\left(x^{2}+3 x+3 x+9\right)(x-4) \\
& =\left(x^{2}+6 x+9\right)(x-4) \\
& =x^{3}+6 x^{2}+9 x-4 x^{2}-24 x-36 \\
& =x^{3}+2 x^{2}-15 x-36
\end{aligned}
$$

Hence, $(x+3)^{2}(x-4)=x^{3}+2 x^{2}-15 x-36$, in descending powers of x.
c. Data: $f(x)=2 x^{2}+4 x-5$
(i) Required To Express: $f(x)=2 x^{2}+4 x-5$ in the form $a(x+b)^{2}+c$. Solution:

$$
\begin{aligned}
f(x) & =2 x^{2}+4 x-5 \\
& =2\left(x^{2}+2 x\right)-5
\end{aligned}
$$

(Half the coefficient of x is $\frac{1}{2}(2)=1$)
Hence $f(x)=2 x^{2}+4 x-5$

$$
\begin{aligned}
& =2(x+1)^{2}+* \\
& =2\left(x^{2}+2 x+1\right)+* \\
& =2 x^{2}+4 x+2 \quad(\text { Hence } *=-7) \\
& \quad \frac{-7}{-5}
\end{aligned}
$$

$\therefore 2 x^{2}+4 x-5 \equiv 2(x+1)^{2}-7$ is of the form $a(x+b)^{2}+c$ where

$$
\begin{aligned}
& a=2 \in \mathfrak{R} \\
& b=1 \in \mathfrak{R} \\
& c=-7 \in \mathfrak{R}
\end{aligned}
$$

OR

$$
\begin{aligned}
2 x^{2}+4 x-5 & =a(x+5)^{2}+c \\
& =a\left(x^{2}+2 b x+b^{2}\right)+c \\
& =a x^{2}+2 a b x+a b^{2}+c
\end{aligned}
$$

Equating coefficient of x^{2}.
$a=2 \in \mathfrak{R}$
Equating coefficient of x.

$$
\begin{aligned}
2(2) b & =4 \\
b & =1 \in \mathfrak{R}
\end{aligned}
$$

Equating constants.

$$
\begin{aligned}
2(1)^{2}+c & =-5 \\
c & =-7 \in \mathfrak{R} \\
\therefore 2 x^{2}+4 x & -5 \equiv 2(x+1)^{2}-7
\end{aligned}
$$

(ii) Required To Find: The equation of the axis of symmetry.

Solution:

If $y=a x^{2}+b x+c$ is any quadratic curve, the axis of symmetry has equation $x=\frac{-b}{2 a}$.
The equation of the axis of symmetry in the quadratic curve

$$
f(x)=2 x^{2}+4 x-5 \text { is } x=\frac{-(4)}{2(2)}
$$

$$
x=-1
$$

(iii) Required To Find: Coordinates of the minimum point on the curve. Solution:

$$
\begin{aligned}
& f(x)=2 x^{2}+4 x-5 \\
& =2(x+1)^{2}-7 \\
& 2(x+1)^{2} \geq 0 \quad \forall x \\
& \therefore f(x)_{\text {min }}=-7 \text { at } 2(x+1)^{2}=0 \\
& x=-1
\end{aligned}
$$

(iv) - (v)

Required To Draw: The graph of $f(x)$ showing the minimum point and the axis of symmetry.
Solution:

10. Data: Pam must buy x pens and y pencils.
a. (i) Data: Pam must buy at least 3 pens.

Required To Find: An inequality to represent the above information.

Solution:

No. of pens bought $=x$
No. of pens is at least 3 .
$\therefore x \geq 3$
(ii) Data: Total number of pens and pencils must not be more than 10 .

Required To Find: An inequality to represent the above information.
Solution:
No. of pencils $=y$
Total number of pens and pencils $=x+y$
$\therefore(x+y)$ is not more than 10 .
$\therefore x+y$ is less than or equal to 10 .
$x+y \leq 10$
(iii) Data: $5 x+2 y \leq 35$

Required To Find: Information represented by this inequality.
Solution:
$5 x+2 y \leq 35 \quad$ (data)
$5 x$ represents the cost of x pens at $\$ 5.00$ each and $2 y$ represents the cost of y pencils at $\$ 2.00$ each.
Total cost is $5 x+2 y$.

Since $5 x+2 y \leq 35$, then the total cost of x pens and y pencils is less than or equal to $\$ 35.00$
That is, the total cost of the x pens and y pencils is not more than $\$ 35.00$.
b. (i) Required To Draw: The graphs of the two inequalities obtained on answer sheet.

Solution:

The line $x=3$ is a vertical line.
The region $x \geq 3$ is

$$
\begin{array}{|lll}
\mathrm{x} & \mathrm{x} \\
\mathrm{x}^{\mathrm{x}} & \mathrm{x}
\end{array} \quad x \geq 3
$$

Obtaining 2 points on the line $x+y=10$
When $x=0$

$$
\begin{aligned}
0+y & =10 \\
y & =10
\end{aligned}
$$

The line $x+y=10$ passes through the point $(0,10)$.
When $y=0$

$$
\begin{aligned}
x+0 & =10 \\
x & =10
\end{aligned}
$$

The line $x+y=10$ passes through the point $(10,0)$.

The region with the smaller angle satisfies the \leq region.
The region with satisfies $x+y \leq 10$ is

The graph of the line $5 x+2 y=35$ was given. It passes through the points $(7,0)$ and $(3,10)$.

The region with the smaller angle satisfies the \leq region.
The region which satisfies $5 x+2 y \leq 35$ is

$$
\begin{array}{r}
--- \\
-- \\
\hline
\end{array} \quad 5 x+2 y \leq 35
$$

The line $y=0$ is the horizontal x-axis.
The region which satisfies $y \geq 0$ is

The region which satisfies all four inequalities is the area in which all four previously shaded regions overlap. The region which satisfies all four inequalities is

(ii) Required To Find: The vertices of the region bounded by the 4 inequalities is shown ABCD (the feasible region)
Solution:
$A(3,0) \quad B(3,7) \quad C(5,5) \quad D(7,0)$
c. Data: A profit of $\$ 1.50$ is made on each pen and a profit of $\$ 1.00$ is made on each pencil.
(i) Required To Find: The profit in terms of x and y. Solution:
Let the total profit on pens and pencils be P. The profit on x pens at $\$ 1 \frac{1}{2}$ and y pencils at $\$ 1$ each $=\left(x \times 1 \frac{1}{2}\right)+(y \times 1)$

$$
\therefore P=1 \frac{1}{2} x+y
$$

(ii) Required To Find: Maximum profit.

Solution:

Choosing only $B(3,7), C(5,5)$ and $D(7,0)$.
At $B x=3 \quad y=7$

$$
\begin{aligned}
P & =3\left(1 \frac{1}{2}\right)+7 \\
& =\$ 11 \frac{1}{2} \\
& =\$ 11.50
\end{aligned}
$$

At $C x=5 \quad y=5$
$P=5\left(1 \frac{1}{2}\right)+5$
$=\$ 12 \frac{1}{2}$
$=\$ 12.50$

At $D x=7 \quad y=0$
$P=7\left(1 \frac{1}{2}\right)$
$=\$ 10 \frac{1}{2}$
$=\$ 10.50$
\therefore Maximum profit made is $\$ 12.50$ when Pam buys 5 pens and 5 pencils.
(iii) Required To Find: The maximum number of pencils Pam can buy if she buys 4 pens.
Solution:

When $x=4$ the maximum value of $y \in Z^{+}$is 6 . Therefore, when 4 pens are bought, the maximum number of pencils that can be bought that satisfies all conditions is 6 .
11. a. Data: Diagram showing 2 circles of radii 5 cm and 2 cm touching at $T, X S R Y$ is a straight line touching the circles at S and R.

(i) (a) Required To State: Why $P T Q$ is a straight line. Solution:
The tangent to both circles at T is a common tangent.

The tangent makes an angle of 90° with the radius $P T$ and 90° with the radius $T Q$.
(Angle made by a tangent to a circle and the radius, at the point of contact $=90^{\circ}$).
$\therefore P \hat{T Q}=180^{\circ}$ (as illustrated) and $P T Q$ is a straight line.
(b) Required To State: The length of $P Q$.

Solution:

$$
\text { Length of } \begin{aligned}
P Q & =\text { Length of } P T+\text { Length of } T Q \\
& =5+2 \\
& =7 \mathrm{~cm}
\end{aligned}
$$

(c) (i) Required To State: Why $P S$ is parallel to $Q R$. Solution:
$P \hat{S} R=Q \hat{R} S=90^{\circ}$
(Angle made by a tangent to a circle and the radius, at the point of contact $=90^{\circ}$).

There are corresponding angles, when $P S$ is parallel to $Q R$ and $S R$ is a transversal.
(ii) Data: N is a point such that QN is perpendicular to PS .

(a) Required To Calculate: The length $P N$. Calculation:
$Q R S N$ is a rectangle and hence $N S=2 \mathrm{~cm}, P S=5 \mathrm{~cm}$

$$
\begin{aligned}
\therefore P N & =5-2 \\
& =3 \mathrm{~cm}
\end{aligned}
$$

(b) Required To Calculate: The length $S R$. Calculation:

$$
\begin{aligned}
N Q & =\sqrt{(7)^{2}-(3)^{2}} \\
& =\sqrt{40} \mathrm{~cm} \\
S R & =N Q \\
S R & =\sqrt{40} \mathrm{~cm} \text { ex actly } \\
& =6.32 \underline{4} \mathrm{~cm} \\
& =6.32 \mathrm{~cm} \text { to } 2 \text { decimal places }
\end{aligned}
$$

b. Data: Circle, centre O and $M \hat{O} L=110^{\circ}$.

(i) Required To Calculate: $M \hat{N} L$ Calculation:

$$
\begin{aligned}
M \hat{N} L & =\frac{1}{2}\left(110^{\circ}\right) \\
& =55^{\circ}
\end{aligned}
$$

(Angle subtended by a chord at the centre of a circle is twice the angle it subtends at the circumference, standing on the same arc).
(ii) Required To Calculate: $L \hat{M} O$

Calculation:
$O M=O L \quad$ (radii)
$L \hat{M} O=\frac{180^{\circ}-110^{\circ}}{2}$

$$
=35^{\circ}
$$

(Base angles of an isosceles triangle are equal and sum of the angles in a triangle $=180^{\circ}$).
12. Data: The distances and directions of a boat traveling from A to B and then to C.
a. Required To Draw: Diagram of the information given, showing the north direction, bearings 135° and 060° and distances 8 km and 15 km .
Solution:

b. (i) Required To Calculate: The distance AC. Calculation:

$$
\begin{aligned}
A \hat{B} C & =45^{\circ}+60^{\circ} \\
& =105^{\circ} \\
A C^{2} & =(15)^{2}+(8)^{2}-2(15)(8) \cos 105^{\circ}(\cos \text { ine law }) \\
& =18.738 \mathrm{~km} \\
& =18.74 \mathrm{~km} \text { to } 2 \text { decimal places }
\end{aligned}
$$

(ii) Required To Calculate: $B \hat{C} A$ Calculation:
Let $B \hat{C} A=\theta$

$$
\begin{aligned}
& \frac{15}{\sin \theta}=\frac{18.738}{\sin 105^{\circ}}(\sin \text { law }) \\
& \therefore \sin \theta=\frac{15 \sin 105^{\circ}}{18.738} \\
& = \\
& =0.7732 \\
& \therefore \theta= \\
& =\sin ^{-1}(0.7732) \\
& \theta= \\
& =50.64^{\circ} \\
& =
\end{aligned} 50.6^{\circ} \text { to the nearest } 0.1^{\circ} \text {. }
$$

(iii) Required To Calculate: The bearing from A from C. Calculation:

The bearing of A from $C=180^{\circ}+60^{\circ}+50.64^{\circ}$

$$
\begin{aligned}
& =290.64^{\circ} \\
& =290.6^{\circ} \text { to the nearest } 0.1^{\circ}
\end{aligned}
$$

13. Data: Vector diagram with $\overrightarrow{O P}=\underline{r}, \overrightarrow{P M}=\underline{s}$ and $O M N$ a straight line with midpoint M. $\overrightarrow{O X}=\frac{1}{3} \overrightarrow{O M}$ and $\overrightarrow{P X}=4 \overrightarrow{X Q}$
a. Required To Sketch: Diagram illustrating the information given.

Solution:

b. (i) Required To Express: $\overrightarrow{O M}$ in terms of \underline{r} and \underline{s}.

Solution:

$$
\begin{aligned}
\overrightarrow{O M} & =\overrightarrow{O P}+\overrightarrow{P M} \\
& =\underline{r}+\underline{s}
\end{aligned}
$$

(ii) Required To Express: $\overrightarrow{P X}$ in terms of \underline{r} and \underline{s}. Solution:

$$
\begin{aligned}
\overrightarrow{O X} & =\frac{1}{3} \overrightarrow{O M} \\
& =\frac{1}{3}(\underline{r}+\underline{s}) \\
\overrightarrow{P X} & =\overrightarrow{P O}+\overrightarrow{O X} \\
& =-(\underline{r})+\frac{1}{3}(\underline{r}+\underline{s}) \\
& =-\frac{2}{3} \underline{r}+\frac{1}{3} \underline{s}
\end{aligned}
$$

(iii) Required To Express: $\overrightarrow{Q M}$ in terms of \underline{r} and \underline{s}.

Solution:

$$
\begin{aligned}
\overrightarrow{P X} & =4 \overrightarrow{X Q} \\
\overrightarrow{P Q} & =\frac{5}{4} \overrightarrow{P X} \\
& =\frac{5}{4}\left(-\frac{2}{3} \underline{r}+\frac{1}{3} \underline{s}\right)
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{P Q} & =-\frac{5}{6} \underline{r}+\frac{5}{12} \underline{s} \\
\overrightarrow{Q M} & =\overrightarrow{Q P}+\overrightarrow{P M} \\
& =-\left(-\frac{5}{6} \underline{r}+\frac{5}{12} \underline{s}\right)+\underline{s} \\
& =\frac{5}{6} \underline{r}+\frac{7}{12} \underline{s}
\end{aligned}
$$

c. Required To Prove: $\overrightarrow{P N}=2 \overrightarrow{P M}+\overrightarrow{O P}$

Proof:

$$
\begin{aligned}
2 \overrightarrow{P M} & =2(\underline{s}) \\
\overrightarrow{O P} & =\underline{r} \\
2 \overrightarrow{P M}+\overrightarrow{O P} & =2 \underline{s}+\underline{r} \\
& =\underline{r}+2 \underline{s}
\end{aligned}
$$

Hence, $\overrightarrow{P N}=2 \overrightarrow{P M}+\overrightarrow{O P} \quad(=\underline{r}+2 \underline{s})$
Q.E.D
14. a. Data: $D=\left(\begin{array}{rr}1 & 9 p \\ p & 4\end{array}\right)$

Required To Calculate: p

Calculation:

If $D=\left(\begin{array}{rr}1 & 9 p \\ p & 4\end{array}\right)$ is singular then $\operatorname{det} \mathrm{D}=0$.
$\therefore(1 \times 4)-(9 p \times p)=0$

$$
\begin{aligned}
4 & =9 p^{2} \\
p^{2} & =\frac{4}{9} \\
p & =\sqrt{\frac{4}{9}} \\
& = \pm \frac{2}{3}
\end{aligned}
$$

Hence, $p= \pm \frac{2}{3}$.
b. Data: $2 x+5 y=6$ and $3 x+4 y=8$
(i) Required To Express: The above equations in the form $A X=B$. Solution:
$2 x+5 y=6$
$3 x+4 y=8$
Hence, $\left(\begin{array}{ll}2 & 5 \\ 3 & 4\end{array}\right)\binom{x}{y}=\binom{6}{8} \quad$...matrix equation
is of the form $A X=B$ where

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & 5 \\
3 & 4
\end{array}\right) \\
& X=\binom{x}{y} \text { and } \\
& B=\binom{6}{8} \text { are matrices. }
\end{aligned}
$$

(ii) (a) Required To Calculate: Determinant of A. Calculation:
Det $\mathrm{A}=(2 \times 4)-(5 \times 3)$

$$
\begin{aligned}
& =8-15 \\
& =-7
\end{aligned}
$$

(b) Required To Prove: $A^{-1}=\left(\begin{array}{rr}-\frac{4}{7} & \frac{5}{7} \\ \frac{3}{7} & -\frac{2}{7}\end{array}\right)$.

Proof:
$A^{-1}=-\frac{1}{7}\left(\begin{array}{cc}4 & -(5) \\ -(3) & 2\end{array}\right)$

$$
=\left(\begin{array}{rr}
-\frac{4}{7} & \frac{5}{7} \\
\frac{3}{7} & -\frac{2}{7}
\end{array}\right)
$$

Q.E.D.
(c) Required To Calculate: x and y Calculation:

$$
A X=B
$$

$\times A^{-1}$

$$
\begin{aligned}
A \times A^{-1} \times X & =A^{-1} \times B \\
I \times X & =A^{-1} B \\
X & =A^{-1} B
\end{aligned}
$$

and
$\binom{x}{y}=\left(\begin{array}{rr}-\frac{4}{7} & \frac{5}{7} \\ \frac{3}{7} & -\frac{2}{7}\end{array}\right)\binom{6}{8}$
$=\binom{\left(-\frac{4}{7} \times 6\right)+\left(\frac{5}{7} \times 8\right)}{\left(\frac{3}{7} \times 6\right)+\left(-\frac{2}{7} \times 8\right)}$

$$
=\binom{-\frac{24}{7}+\frac{40}{7}}{\frac{18}{7}-\frac{16}{7}}
$$

$$
=\binom{2 \frac{2}{7}}{\frac{2}{7}}
$$

Equating corresponding $x=2 \frac{2}{7}$ and $y=\frac{2}{7}$.

