CXC JUNE 2006 MATHEMATICS GENERAL PROFICIENCY (PAPER 2)

Section I

1. a. (i) Required To Calculate: $(12.3)^{2}-(0.246 \div 3)$ exactly.

Calculation:

$$
\begin{aligned}
(12.3)^{2}-(0.246 \div 3) & =151.29-0.082 \\
& =151.208 \text { exactly }
\end{aligned}
$$

(ii) Required To Calculate: $(12.3)^{2}-(0.246 \div 3)$ to 2 significant figures. Calculation:
The number $151.208=150$ to 2 significant figures.
b. Data: Table showing the depreciation of vehicles over a period.
(i) Required To Calculate: The values of p and q.

Calculation:
Taxi depreciates by 12% per year.
\therefore Depreciation of taxi costing $\$ 40000$ after 1 year $=\frac{12}{100} \times 40000$

$$
=\$ 4800
$$

Hence, value after 1 year $=\$ 40000-\$ 4800$

$$
\begin{aligned}
& =\$ 35200 \\
p & =35200
\end{aligned}
$$

Depreciation of private car $=\$ 25000-\$ 21250$

$$
\begin{aligned}
& =\$ 3750 \\
\% \text { Depreciation } & =\frac{3750}{25000} \times 100 \\
& =15 \% \\
q & =15
\end{aligned}
$$

(ii) Required To Calculate: Value of taxi after 2 years.

Calculation:
Depreciation of taxi in the $2^{\text {nd }}$ year is 12% of its value after $1^{\text {st }}$ year.
Depreciation in $2^{\text {nd }}$ year $=\frac{12}{100} \times 35200$

$$
=\$ 4224
$$

\therefore Value of taxi after 2 years $=\$ 35200-\$ 4224$

$$
=\$ 30976
$$

OR

$$
\begin{aligned}
A & =P\left(1-\frac{R}{100}\right)^{n} \\
P & =40000 \quad R=-12 \\
A & =40000\left(1-\frac{12}{100}\right)^{2} \\
& =\$ 30976
\end{aligned}
$$

c. Data: GUY $\$ 1.00 \equiv$ US $\$ 0.01$ and EC $\$ 1.00 \equiv$ US $\$ 0.37$
(i) Required To Calculate: Value of GUY \$60 000 in US \$. Calculation:

GUY $\$ 1.00 \equiv$ US $\$ 0.01$

$$
\begin{aligned}
\text { GUY } \$ 60000 & =\text { US } \$ 0.01 \times 60000 \\
& =\text { US } \$ 600.00
\end{aligned}
$$

(ii) Required To Calculate: Value of US \$925 in EC \$. Calculation:

US $\$ 0.37 \equiv$ US $\$ 1.00$

$$
\begin{aligned}
\text { US } \$ 1.00 & =\text { EC } \$ \frac{1.00}{0.37} \\
\text { US } \$ 925.00 & =\text { EC } \$ \frac{1.00}{0.37} \times 925 \\
& =\text { EC } \$ 2500.00
\end{aligned}
$$

2. a. Required To Simplify: $\frac{x-3}{3}-\frac{x-2}{5}$

Solution:

Simplifying

$$
\begin{aligned}
& \frac{x-3}{3}-\frac{x-2}{5} \\
= & \frac{5(x-3)-3(x-2)}{15} \\
= & \frac{5 x-15-3 x+6}{15} \\
= & \frac{2 x-9}{15}
\end{aligned}
$$

b. (i) Required To Factorise: (a) $x^{2}-5 x$, (b) $x^{2}-81$

Factorising:
(a) $x^{2}-5 x=x \cdot x-5 \cdot x$

$$
=x(x-5)
$$

(b) $x^{2}-81=(x)^{2}-(9)^{2}$

Difference of 2 squares.

$$
=(x-9)(x+9)
$$

(ii) Required To Simplify: $\frac{a^{2}+4 a}{a^{2}+3 a-4}$

Solution:

Simplifying

$$
\begin{aligned}
\frac{a^{2}+4 a}{a^{2}+3 a-4} & =\frac{a(a+4)}{(a-1)(a+4)} \\
& =\frac{a}{a-1}
\end{aligned}
$$

c. Data: 2 cassettes and 3 CD's cost $\$ 175$ and 4 cassettes and $1 C D$ cost $\$ 125$. One cassette costs $\$ x$ and one CD costs $\$ y$.
(i) Required To Find: Expression in x and y for the information given. Solution:
2 cassettes at $\$ x$ each and 3 CD's at $\$ y$ each cost $(2 \times x)+(3 \times y)$,
Hence, $2 x+3 y=175 \ldots$ (1)
4 cassettes and 1 CD cost $(4 \times x)+(1 \times y)$,
Hence, $4 x+y=125 \ldots$ (2)
(ii) Required To Calculate: Cost of one cassette.

Calculation:
From (2)

$$
y=125-4 x
$$

Substitute in (1)

$$
\begin{aligned}
2 x+3(125-4 x) & =175 \\
2 x+375-12 x & =175 \\
375-175 & =12 x-2 x \\
10 x & =200 \\
x & =20
\end{aligned}
$$

\therefore Cost of one cassette is $\$ 20$.
3. a. Data: Diagram of a quadrilateral $K L M N$ with $L M=L N=L K, K \hat{L} M=140^{\circ}$ and $L \hat{K} N=40^{\circ}$.

(i) Required To Calculate: $L \hat{N} K$ Calculation:

$$
L K=L N \quad \text { (data) }
$$

$$
L \hat{N} K=40^{\circ}
$$

(Base angles of an isosceles triangle are equal).
(ii) Required To Calculate: $N \hat{L} M$

Calculation:

$$
\begin{aligned}
N \hat{L} K & =180^{\circ}-\left(40^{\circ}+40^{\circ}\right) \\
& =100^{\circ}
\end{aligned}
$$

(Sum of angles in a triangle $=180^{\circ}$).

$$
\begin{aligned}
N \hat{L} M & =140^{\circ}-100^{\circ} \\
& =40^{\circ}
\end{aligned}
$$

(iii) Required To Calculate: $K \hat{N} M$

Calculation:

$$
\begin{aligned}
L N & =L M \quad \text { data) } \\
L \hat{N M} M & =L \hat{M} N \\
& =\frac{180^{\circ}-40^{\circ}}{2} \\
& =70^{\circ}
\end{aligned}
$$

(Base angles in an isosceles triangle are equal and sum of angles in a triangle $=180^{\circ}$).

$$
\begin{aligned}
K \hat{N M} M & =40^{\circ}+70^{\circ} \\
& =110^{\circ}
\end{aligned}
$$

b. Data: Survey done on 39 students on the ability to ride a bike and /or drive a car.
(i) Required To Complete: Venn diagram to represent the information given.

Solution:

(ii) Required To Find: Expression in x for the number of students in the survey.

Solution:

No. of students in the survey $=(18-x)+x+(15-x)+3 x$

$$
=33+2 x
$$

(iii) Required To Calculate: x

Calculation:
Hence,

$$
\begin{aligned}
33+2 x & =39 \\
2 x & =39-33 \\
x & =3
\end{aligned}
$$

4. Data: $A B=8 \mathrm{~cm}, B \hat{A} C=60^{\circ}$ and $A C=5 \mathrm{~cm}$
a. Required To Construct: Triangle ABC based on the information given.

Solution:

b. Required To Find: Length of $B C$

Solution:
$B C=7 \mathrm{~cm}$ (by measurement)
c. Required To Calculate: Perimeter of $\triangle A B C$

Calculation:
Perimeter of $\triangle A B C=5 \mathrm{~cm}+8 \mathrm{~cm}+7 \mathrm{~cm}$

$$
=20 \mathrm{~cm}
$$

d. Required To Draw: Line $C D$ which is perpendicular to $A B$ and meets $A B$ at D.

Solution:

e. Required To Find: The length of $C D$.

Solution:
$C D=4.3 \mathrm{~cm}$ (by measurement)
f. Required To Calculate: Area of $\triangle A B C$

Calculation:
Area of $\triangle A B C=\frac{8 \times 4.3}{2}=17.2 \mathrm{~cm}^{2}$
5. Data: Diagram illustrating the graph of the function $f(x)=x^{2}-2 x-3$ for $a \leq x \leq b$ and the tangent at $(2,-3)$.
a. Required To Find: a and b.

Solution:

$x \geq-2$ and $x \leq 4$.
$\therefore a=-2$ and $b=4$ from the diagram, that is $-2 \leq x \leq 4$.
b. Required To Find: x for $x^{2}-2 x-3=0$.

Solution:

$x^{2}-2 x-3=0$ cuts the x - axis at -1 and 3 as seen on the diagram. Therefore, the values of x are -1 and 3 .
c. Required To Find: Coordinates of the minimum point on the graph. Solution:

The minimum point of $f(x)$ is $(1,-4)$ as seen on the diagram.
d. Required To Find: Whole number values of x for which $x^{2}-2 x-3<1$. Solution:

From the diagram, $x^{2}-2 x-3<1$ for $x>-1.2$ and $x<3.2$, that is $-1.2<x<3.2$.
$x \in W \quad \therefore x=\{0,1,2,3\}$
e. Required To Find: gradient of $f(x)=x^{2}-2 x-3$ at $x=2$.

Solution:

Choosing $(2,-3)$ and $(4,1)$ as 2 points on the tangent to $f(x)$ at $(2,-3)$.
Gradient $=\frac{1-(-3)}{4-2}$
$=\frac{4}{2}$
$=2$
\therefore Gradient of $f(x)$ at $(2,-3)$ is 2 .
6. Data: Diagram showing the direction and distance of a man walking.
a. \quad Required To Complete: The diagram given showing distances $x \mathrm{~km},(x+7) \mathrm{km}$ and 13 km .
Solution:

b. Required To Find: Equation in x that satisfies Pythagoras' Theorem and that simplifies to $x^{2}+7 x-60=0$.
Solution:

$$
\begin{aligned}
&(x)^{2}+(x+7)^{2}=(13)^{2} \\
& x^{2}+\left(x^{2}+14 x+49\right)=168 \\
& 2 x^{2}+14 x-120=0 \\
& \div 2
\end{aligned} \quad \text { (Pythagoras' Theorem) }
$$

Q.E.D.

c. Required To Find: Distance $G H$.

Solution:
d. Required To Find: Bearing of F from G.

Solution:
The bearing of F from G is illustrated by θ.

$\tan \theta=\frac{12}{5}$

$$
\theta=\tan ^{-1}\left(\frac{12}{5}\right)
$$

$$
\theta=67.4^{\circ}
$$

\therefore The bearing of F from G is 067.4°

$$
\begin{aligned}
& x^{2}+7 x-60=0 \\
& (x+12)(x-5)=0 \\
& x=-12 \text { or } 5 \\
& x \neq-12 \text { (since } G H \text { and } H F \text { would be negative) } \\
& x=5 \text { only } \\
& G H=5 \mathrm{~km}
\end{aligned}
$$

7. Data: Table showing the gains in mass of 100 cows over a certain period.
a. Required To Complete: Table of information given.

Solution:
Modifying the table for the data of the continuous variable

Gain in mass in kg Continuous variable	L.C.B U.C.B.	Mid-class Interval, \boldsymbol{x} $\frac{\text { L.C.B.+ U.C.B. }}{2}$	Frequency, \boldsymbol{f}
	$4.5 \leq x<9.5$	$\frac{4.5+9.5}{2}=7$	0
$5-9$	$9.5 \leq x<14.5$	$\frac{9.5+14.5}{2}=12$	29
$10-14$	$14.5 \leq x<19.5$	$\frac{14.5+19.5}{2}=17$	37
$15-19$	$19.5 \leq x<24.5$	$\frac{19.5+24.5}{2}=22$	16
$20-24$	$24.5 \leq x<29.5$	$\frac{24.5+29.5}{2}=27$	14
$25-29$	$29.5 \leq x<34.5$	$\frac{29.5+34.5}{2}=32$	2
$30-34$		37	0

b. (i) Required To Estimate: Mean gain in mass of the 100 cows.

Solution:

The mean gain, \bar{x}

$$
\begin{aligned}
\bar{x} & =\frac{\sum f x}{\sum f} \\
& =\frac{(2 \times 7)+(29 \times 12)+(37 \times 17)+(16 \times 22)+(14 \times 27)+(2 \times 32)}{\sum f=100} \\
& =17.85 \mathrm{~kg}
\end{aligned}
$$

(ii) Required To Draw: The frequency polygon for the information given.

Solution:

The points $(2,0)$ and $(37,0)$ are obtained by extrapolation as the frequency polygon is to be bounded by the horizontal axis.

c. Required To Calculate: Probability that a randomly chosen cow gained 20 kg or more.
Solution:
$P($ cow gained $\geq 20 \mathrm{~kg})=\frac{\text { No. of cows gaining } \geq 20 \mathrm{~kg}}{\text { Total no. of cows }}$

$$
=\frac{16+14+2}{\sum f=100}
$$

$$
=\frac{32}{100}
$$

$$
=\frac{8}{25}
$$

8. Data: Drawings showing a sequence of squares made from toothpicks.
a. (i) Required To Draw: Next shape in the sequence.

Solution:

(ii)

Column 1	Column 2	Column 3
Length, \boldsymbol{n}, of one side of square	Pattern for calculating number of toothpicks in square	Total number of toothpicks in square
$\mathbf{1}$	$1 \times 2 \times 2$	4
$\mathbf{2}$	$2 \times 3 \times 2$	12
$\mathbf{3}$	$3 \times 4 \times 2$	24
$\mathbf{4}$	$4 \times 5 \times 2$	40
$\mathbf{7}$		
\boldsymbol{n}	$7=n \times(n+1) \times 2$	$2 n(n+1)$
$\boldsymbol{s}=\mathbf{1 0}$	$10 \times 11 \times 2$	220

(ii) The column 2 is a product of three numbers, that is

First number \times Second number \times Third number

Same number as column 1

Always 2

One more than the number in column 1
a) Required To Complete: Table when $n=4$

Solution:

When column 1 is 4

$$
\text { Column } \begin{aligned}
2 & =4 \times(4+1) \times 2 \\
& =4 \times 5 \times 2
\end{aligned}
$$

Column 3 is the result $=40$ of column 2.
b) Required To Complete: The table when $n=7$

Solution:

When column 1 is 7

$$
\text { Column } \begin{aligned}
2 & =7 \times(7+1) \times 2 \\
& =7 \times 8 \times 2
\end{aligned}
$$

And column 3 is 112.
b. (i) Required To Complete: The table for length of side n.

Solution:

When column 1 is n, column 2 is r.

$$
\begin{aligned}
\therefore r & =n \times(n+1) \times 2 \\
& =2 n(n+1) \\
\operatorname{Col} 3 & =2 n(n+1)
\end{aligned}
$$

(ii) Required To Complete: The table when column 3 is 220 .

Solution:

Column 3 is 220 .

$$
\begin{aligned}
n \times(n+1) \times 2 & =220 \\
2 n(n+1) & =220 \\
n(n+1) & =110 \\
n^{2}+n-110 & =0 \\
(n+11)(n-10) & =0 \\
n & =-11 \text { or } 10
\end{aligned}
$$

$$
\begin{aligned}
& n \neq-v e \\
& n=10
\end{aligned}
$$

Therefore, in (b) (ii) $s=10$ and

$$
\text { Column } 2=10 \times(10+1) \times 2
$$

$$
=10 \times 11 \times 2
$$

9. a. Data: $y=x+2$ and $y=x^{2}$

Required To Calculate: x and y
Calculation:
Let $y=x+2 \ldots$ (1) and $y=x^{2} \ldots$ (2)
Equating

$$
\begin{aligned}
x^{2} & =x+2 \\
x^{2}-x-2 & =0 \\
(x-2)(x+1) & =0 \\
\therefore x & =2 \text { or }-1
\end{aligned}
$$

When $x=2$

$$
\begin{aligned}
y & =2+2 \\
& =4
\end{aligned}
$$

When $x=-1$

$$
\begin{aligned}
y & =(-1)^{2} \\
& =1
\end{aligned}
$$

Hence, $x=2$ and $y=4$ OR $x=-1$ and $y=1$.
b. Data: Strip of wire 32 m long is cut into 2 pieces and formed into a square and a rectangle.

(i) Required To Find: Expression in terms of x and l for the length of the strip of wire.

Solution:

Perimeter of square $=(x \times 4)$
$=4 x \mathrm{~cm}$
Perimeter of rectangle $=2(l+3)$

$$
=2 l+6 \mathrm{~cm}
$$

$$
\therefore 4 x+2 l+6=32
$$

(ii) Required To Prove: $l=13-2 x$

Proof:

$$
\begin{aligned}
& 4 x+2 l+6=32 \\
& 4 x+2 l=32-6 \\
& 4 x+2 l=26 \\
& \div 2 \\
& 2 x+l=13 \\
& l=13-2 x
\end{aligned}
$$

(iii) Required To Prove: $S=x^{2}-6 x+39$.

Proof:

$$
\begin{aligned}
S & =\left(x^{2}\right)+(3)(l) \\
S & =x^{2}+3 l \\
S & =x^{2}+3(13-2 x) \\
& =x^{2}+39-6 x \\
& =x^{2}-6 x+39
\end{aligned}
$$

Q.E.D.

(iv) Required To Calculate: x for which $S=30.25$ Calculation:

$$
\begin{aligned}
& x^{2}-6 x+39=30.25 \\
& x^{2}-6 x+8.75=0 \\
& \times 4 \\
& 4 x^{2}-24 x+35=0 \\
&(2 x-5)(2 x-7)=0 \\
& x=2 \frac{1}{2} \text { or } 3 \frac{1}{2}
\end{aligned}
$$

Hence, when $S=30.25, \quad x=2 \frac{1}{2}$ or $3 \frac{1}{2}$.
10. Data: Conditions for the parking of x vans and y cars at a lot.
(i) Required To Find: Inequality for the information given.

Solution:
No. of vans $=x$
No. of cars $=y$
Lot has space for no more than 60 vehicles. Therefore,
$\therefore x+y \leq 60 \ldots$ (1)
(ii) Data: Owner must part at least 10 cars.

Required To Find: Inequality for the information given.
Solution:
No. of cars is at least 10 .
$\therefore y \geq 10$.
(iii) Data: Number of cars parked must be fewer than or equal to twice the number of vans parked.
Required To Find: Inequality for the information given.
Solution:
The no. of cars parked must be fewer than or equal to twice the number of vans.

$$
\begin{array}{ccc}
y & \leq & 2 x \\
\therefore y \leq 2 x \ldots(3) & &
\end{array}
$$

(iv) Required To Draw: The graphs of the lines associated with the inequalities and shaded the region which satisfies all three.

Solution:

Obtaining 2 points on the line $x+y=60$.
When $x=0$

$$
\begin{aligned}
0+y & =60 \\
y & =60
\end{aligned}
$$

The line $x+y=60$ passes through the point $(0,60)$.
When $y=0$

$$
\begin{aligned}
x+0 & =60 \\
x & =60
\end{aligned}
$$

The line $x+y=60$ passes through the point $(60,0)$.

The side with the smaller angle satisfies the \leq region.
The region which satisfies $x+y \leq 60$ is

$$
\begin{array}{|l|l}
\hline \mathrm{x} & \mathrm{x} \\
\mathrm{x} & \mathrm{x} \\
\mathrm{x}
\end{array} \quad x+y \leq 60
$$

The line $y=10$ is a horizontal straight line.
The region which satisfies $y \geq 10$ is

$$
\begin{array}{lll}
0 & 0 \\
0 & 0 & 0
\end{array} \quad y \geq 10
$$

Obtaining 2 points on the line $y=2 x$.
The line $y=2 x$ passes through the origin $(0,0)$.
When $x=20 \quad y=2(20)$
$y=40$
The line $y=2 x$ passes through the point $(20,40)$.

The side with the smaller angle satisfies the \leq region.
The region which satisfies $y \leq 2 x$ is

The region which satisfies all three inequalities is the area in which all three shaded regions overlap.

(v) Data: Parking fee for a van is $\$ 6$ and parking fee for a car is $\$ 5$.

Required To Find: Expression in x and y for total fees charged for parking x vans and y cars.

Solution:

The total fees on x vans at $\$ 6$ each and y cars at $\$ 5$ each $=(x \times 6)+(y \times 5)$

$$
=6 x+5 y
$$

(vi) Required To Find: Vertices of the shaded region.

Solution:
The vertices are $(5,10),(20,40)$ and $(50,10)$.
(vii) Required To Calculate: Maximum fees charged.

Calculation:
Testing $(20,40)$ and $(50,10)$

$$
x=20 \quad y=40
$$

Fees $=6(20)+5(40)$

$$
=320
$$

$x=50 \quad y=10$
Fees $=6(50)+5(10)$ $=350$
\therefore Maximum fee charged is $\$ 350$, when there are 50 vans and 10 cars.
11. a. Data: Diagram of a vertical tower and antenna mounted atop. Point P lies on horizontal ground.
(i) Required To Complete: The diagram given, showing the distance 28 m , angles 40° and 54° and any right angles.

Solution:

(ii) Required To Calculate: Length of antenna $T W$.

Calculation:

$$
\begin{aligned}
& \frac{T F}{28}=\tan 40^{\circ} \\
& T F=28 \tan 40^{\circ} \\
& \begin{aligned}
& \frac{W F}{28}=\tan 54^{\circ} \\
& \begin{aligned}
W F & =28 \tan 54^{\circ} \\
\text { Length of antenna } & =\text { Length of } W F-\text { Length of } T F \\
& =28 \tan 54^{\circ}-28 \tan 40^{\circ} \\
& =15.04 \mathrm{~m} \\
& =15.0 \mathrm{~m}
\end{aligned}
\end{aligned} . \begin{aligned}
\\
\end{aligned} \\
&
\end{aligned}
$$

b. Data: Diagram showing a circle centre O and tangents $B D$ and $D C E . B \hat{C} D=70^{\circ}$

(i) Required To Calculate: $O \hat{C} E$ Calculation: $O \hat{C} E=90^{\circ}$
(Angles made by tangent to a circle and radius, at point of contact $=90^{\circ}$).
(ii) Required To Calculate: $B \hat{A} C$

Calculation:

$$
\begin{aligned}
B \hat{A} C & =\frac{1}{2}\left(140^{\circ}\right) \\
& =70^{\circ}
\end{aligned}
$$

(Angles subtended by a chord at the centre of the circle equal twice the angle is subtends at the circumference, standing on the same arc).
(iii) Required To Calculate: $B \hat{O} C$

Calculation:

$$
\begin{aligned}
O \hat{C} B & =180^{\circ}-\left(70^{\circ}+90^{\circ}\right) \\
& =20^{\circ}
\end{aligned}
$$

(Angles in a straight line).
$O B=O C \quad$ (radii)
$O \hat{B} C=20^{\circ}$
(Base angles of an isosceles triangle are equal).

$$
\begin{aligned}
B \hat{O} C & =180^{\circ}-\left(20^{\circ}+20^{\circ}\right) \\
& =140^{\circ}
\end{aligned}
$$

$\left(\right.$ Sum of angles in a triangle $\left.=180^{\circ}\right)$.
(iv) Required To Calculate: $B \hat{D} C$ Calculation:

$$
\begin{aligned}
B \hat{D} C & =360^{\circ}-\left(90^{\circ}+90^{\circ}+140^{\circ}\right) \\
& =40^{\circ}
\end{aligned}
$$

(Sum of angles in a quadrilateral is 360°).
12. a. Data: Parallelogram $E F G H$ with $E H=4.2 \mathrm{~cm}, E F=6 \mathrm{~cm}$ and $H \hat{E} F=70^{\circ}$

(i) Required To Calculate: Length of $H F$. Calculation:

$$
\begin{aligned}
H F^{2} & =(4.2)^{2}+(6)^{2}-2(4.2)(6) \cos 70^{\circ} \quad(\text { Cosine Rule }) \\
& =36.402 \\
H F & =\sqrt{36.402} \\
& =6.03 \underline{3} \\
& =6.03 \text { to } 2 \text { decimal places }
\end{aligned}
$$

(ii) Required To Calculate: Area of parallelogram $E F G H$. Calculation:
Area of $\triangle H E F=\frac{1}{2}(4.2)(6) \sin 70^{\circ}$
Diagonal $H F$ bisects the parallelogram $E F G H$.

$$
\begin{aligned}
\therefore \text { Area of parallelogram } E F G H & =2\left(\frac{1}{2}(4.2)(6) \sin 70^{\circ}\right) \\
& =23.68 \underline{0} \\
& =23.68 \text { to } 2 \text { decimal places }
\end{aligned}
$$

b. This part of the question has not been solved as it involves Earth Geometry which has since been removed from the syllabus.
13. Data: Diagram showing the position vectors of 2 points A and C relative to O.
a. Required To Complete: The diagram to show B, such that OABC is a parallelogram and \underline{u}.

Solution:

$\overrightarrow{O A}=\binom{6}{2}$ and $\overrightarrow{O C}=\binom{0}{4}$ from diagram

$$
\begin{aligned}
\underline{u} & =\overrightarrow{O A}+\overrightarrow{O C} \\
& =\binom{6}{2}+\binom{0}{4} \\
& =\binom{6}{6}
\end{aligned}
$$

b. (i) Required To Express: $\overrightarrow{O A}$ in the form $\binom{x}{y}$.

Solution:

Since A is $(6,2)$ then $\overrightarrow{O A}=\binom{6}{2}$ is of the form $\binom{x}{y}$ where $x=6$ and $y=2$.
(iii) Required To Express: $\overrightarrow{O C}$ in the form $\binom{x}{y}$.

Solution:

Since C is $(0,4)$ then $\overrightarrow{O C}=\binom{0}{4}$ is of the form $\binom{x}{y}$ where $x=0$ and $y=4$.
(iv) Required To Express: $\overrightarrow{A C}$ in the form $\binom{x}{y}$.

Solution:

$$
\begin{aligned}
\overrightarrow{A C} & =\overrightarrow{A O}+\overrightarrow{O C} \\
& =-\binom{6}{2}+\binom{0}{4} \\
& =\binom{-6}{2} \\
\overrightarrow{A C} & =\binom{-6}{2} \text { is of the form }\binom{x}{y} \text { where } x=-6 \text { and } y=2 .
\end{aligned}
$$

c. Data: G is the midpoint of $O B$.
(i) Required To Find: Coordinates of G.

Solution:

$$
\begin{aligned}
\overrightarrow{O B} & =\binom{6}{6} \\
\overrightarrow{O G} & =\frac{1}{2} \overrightarrow{O B} \\
& =\frac{1}{2}\binom{6}{6} \\
& =\binom{3}{3}
\end{aligned}
$$

Hence G is $(3,3)$
(ii) Required To Prove: A, G and C lie on a straight line.

Proof:

$$
\begin{aligned}
\overrightarrow{A C} & =\binom{-6}{2} \\
\overrightarrow{A G} & =\overrightarrow{A O}+\overrightarrow{O G} \\
& =-\binom{6}{2}+\binom{3}{3} \\
& =\binom{-3}{1} \\
& =\frac{1}{2} \overrightarrow{A C}
\end{aligned}
$$

$\overrightarrow{A G}$ is a scalar multiple of $\overrightarrow{A C} . \therefore \overrightarrow{A G}$ and $\overrightarrow{A C}$ are parallel. G is a common point, therefore, G lies on $A C$, hence, A, G and C lies on the same straight line, that they are collinear.
14. a. \quad Data: $|M|=\left(\begin{array}{rr}2 & 3 \\ -1 & x\end{array}\right)=9$
(i) Required To Calculate: a

Calculation:

$$
\begin{aligned}
|M| & =9 \\
(2 \times x)-(3 \times-1) & =9 \\
2 x+3 & =9 \\
2 x & =6 \\
x & =3
\end{aligned}
$$

(ii) Required To Calculate: M^{-1} Calculation:

$$
\begin{aligned}
M & =\left(\begin{array}{rr}
2 & 3 \\
-1 & 3
\end{array}\right) \\
M^{-1} & =\frac{1}{9}\left(\begin{array}{rr}
3 & -(3) \\
-(-1) & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{3}{9} & -\frac{3}{9} \\
\frac{1}{9} & \frac{2}{9}
\end{array}\right)
\end{aligned}
$$

(iii) Required To Prove: $M^{-1} M=I$ Proof:

$$
\begin{aligned}
& M_{2 \times 2} \times M_{2 \times 2}^{-1}=\left(\begin{array}{ll}
e_{11} & e_{12} \\
e_{21} & e_{22}
\end{array}\right) \\
& e_{11}=\left(2 \times \frac{3}{9}\right)+\left(3 \times \frac{1}{9}\right) \\
&=\frac{9}{9} \\
&=1 \\
& e_{12}=\left(2 \times-\frac{3}{9}\right)+\left(3 \times \frac{2}{9}\right) \\
&=\frac{0}{9} \\
&=0 \\
& e_{21}=\left(-1 \times \frac{3}{9}\right)+\left(3 \times \frac{1}{9}\right) \\
&=\frac{0}{9} \\
&=0 \\
& e_{22}=\left(-1 \times-\frac{3}{9}\right)+\left(3 \times \frac{2}{9}\right) \\
&=\frac{9}{9} \\
&=1 \\
&=I \\
& M \times M^{-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
&
\end{aligned}
$$

Q.E.D.
b. Data: Graph showing line segment $A C$ and its image $A^{\prime} C^{\prime}$ after a transformation $\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)$.

(i) (a) Required To Express: A and C as a single 2×2 matrix.

Solution:

Coordinates of A and C in matrix form is $\left(\begin{array}{ll}2 & 5 \\ 4 & 3\end{array}\right)$.
(b) Required To Express: A^{\prime} and C^{\prime} as a single 2×2 matrix.

Solution:
Coordinates of A^{\prime} and C^{\prime} in matrix form is $\left(\begin{array}{rr}2 & 5 \\ -4 & -3\end{array}\right)$.
(ii) Required To Find: Equation to represent the transformation of $A C$ onto $A^{\prime} C^{\prime}$.

Solution:

$$
A C \rightarrow A^{\prime} C^{\prime}
$$

$\left(\begin{array}{ll}2 & 5 \\ 4 & 3\end{array}\right) \xrightarrow{\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)}\left(\begin{array}{rr}2 & 5 \\ -4 & -3\end{array}\right)$
$\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)\left(\begin{array}{ll}2 & 5 \\ 4 & 3\end{array}\right)=\left(\begin{array}{cc}2 p+4 q & 5 p+3 q \\ 2 r+4 s & 5 r+3 s\end{array}\right)$
(iii) Required To Calculate: p, q, r and s Calculation:

Equating corresponding entries

$$
\begin{align*}
& 2 p+4 q=2 \ldots(1) \\
& \times 5 \\
& 10 p+20 q=10 \\
& 5 p+3 q=5 \ldots(2) \tag{2}\\
& \times-2 \\
& -10 p-6 q=-10
\end{align*}
$$

$$
10 p+20 q=10
$$

$$
-10 p-6 q=-10
$$

$$
14 q=0
$$

$\therefore q=0$ and $p=1$
Similarly,

$$
\begin{equation*}
2 r+4 s=-4 \tag{3}
\end{equation*}
$$

$$
\times 5
$$

$$
10 r+20 s=-20
$$

$$
\begin{equation*}
5 r+3 s=-3 \tag{4}
\end{equation*}
$$

$$
x-2
$$

$$
-10 r-6 s=6
$$

$$
10 r+20 s=-20
$$

$$
-10 r-6 s=6
$$

$$
14 s=-14
$$

$s=-1$ and $r=0$
$\therefore p=1, q=0, r=0$ and $s=-1$ and the matrix $\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$,
which represents a reflection in the x-axis.
We may also deduce this by observing the object $A C$ and its image $A^{\prime} C^{\prime}$.

