

JANUARY 2005 CXC MATHEMATICS GENERAL PROFICIENY (PAPER 2)

Section I

1. a. **Required To Calculate:** $\sqrt{\frac{13.2}{0.33}}$ to 3 decimal places.

Calculation:

$$\sqrt{\frac{13.2}{0.33}} = \sqrt{40}$$
 (using a calculator)
= 6.3245
= 6.325 to 3 decimal places (as required)

b. Data: Table illustrating telephone rates.
 Required To Prove: The cost of using the land line is less than the cost for using the cellular phone.
 Proof:

(i) Duration of calls in the month is 1 hour 5 minutes = (60 + 5)

= 65 minutes

Cost of using the land line phone = Rental fee + Charges per min.

$$=$$
 \$45.00 + (65 × 0.15)

Cost using the cellular phone = $$0.85 \times 65$ = \$55.25

Hence the cost of using the land line telephone is less (\$54.75) than using the cellular phone (\$55.25).

Required To Calculate: Duration of the calls for the month of March

(ii) In March, the cost of using the land line phone accounted for a bill of \$54.60.

Cost of only the calls = \$54.60 - Rental fee= \$54.60 - \$45.00= \$9.60

: Duration of the land line calls $=\frac{9.60}{0.15}=64$ minutes.

2. a. **Data:**
$$r = \frac{2p^2}{q-3}$$

Required To Calculate: The value of *r* when p = 6 and q = 12 **Solution:**

(i) When
$$p = 6$$
 and $q = 12$,
 $r = \frac{2(6)^2}{12 - 3} = \frac{2(36)}{9} = \frac{72}{9} = 8$

Required To : Make *q* the subject

(ii)
$$r = \frac{2p^2}{q-3}$$
$$\frac{r}{1} = \frac{2p^2}{(q-3)}$$
$$r(q-3) = 2p^2 \times 1$$
$$rq - 3r = 2p^2$$
$$rq = 2p^2 + 3r$$
$$q = \frac{2p^2 + 3r}{r}$$
$$\left(= \frac{2p^2}{r} + \frac{3r}{r} \right)$$
$$OR = \frac{2p^2}{r} + 3$$

b. Required To Factorise Completely:

(i) 3g - 3t + 2mg - 2mt(ii) $3x^2 + 2x - 8$ (iii) $3x^2 - 27$

Solution:

(i)
$$3g - 3t + 2mg - 2mt$$

= $3(g - t) + 2m(g - t)$
= $(g - t)(3 + 2m)$

(ii)
$$3x^2 + 2x - 8$$

 $(3x - 4)(x + 2)$

(iii)
$$3x^{2} - 27$$
$$= 3(x^{2} - 9)$$
$$= 3\{(x)^{2} - (3)^{2}\}$$
This is a difference of 2 squares and
$$= 3(x - 3)(x + 3)$$

c. **Data:** Table of values of x and y and that y varies inversely as x. **Required To Calculate:** The value of a **Solution:**

y
$$\propto \frac{1}{x}$$

 $\therefore y = k \times \left(\frac{1}{x}\right)$ (k = the constant of proportionality)
And $y = \frac{k}{x}$
From the table $x = 2$ when $y = 8$
 $\therefore 8 = \frac{k}{2}$
 $\therefore k = 16$
and $y = \frac{16}{x}$
When $x = 32$
 $y = \frac{16}{32}$
 $y = \frac{1}{2}$

3. a. **Data:** Information to complete the given sketch of a Venn diagram. **Required To Complete:** The Venn diagram to represent the information given **Solution:**

(i)

(ii) **Required To Find:** an equation in *x* for the number of candidates in U. **Solution:**

n(U) = (11 - x) + x + (9 - x) + 18 = 32 $\therefore 38 - x = 32$

(iii) Required to Calculate: the value of x. Solution: 38 - x = 32 $\therefore 38 - 32 = x$

x = 6

(iv) **Required:** To shade the region $F' \cap S$ Solution:

b. **Data:** Diagram showing the cross-section of a shed.

(i) **Required To Find:** an expression in terms of *y* for the area of the figure. **Solution:**

The cross section is divided into 2 regions, A and B, as shown on the diagram.

Area of rectangle A =
$$8 \times 2y$$

= $16y \text{ m}^2$
Area of triangle B = $\frac{8 \times y}{2}$
= $4y \text{ m}^2$
 \therefore Cross sectional area of the figure = $16y + 4y$

$$= 20 v m^2$$

- (ii) Required To Calculate: the value of y Solution: Total area = 28 m^2 $\therefore 20y = 28$ $\therefore y = 1\frac{8}{20}$
- 4. a. Constructing a rectangle *PQRS* with PQ = 8 cm and PS = 6 cm

 $y = 1\frac{2}{5}$

Diagonal PR = 10.0 cm (by measurement)

b. **Data:** Diagram with *Y* due east of *W* and *V* north of *W*.

(i) **Required to Calculate:** $Z\hat{X}V$ **Solution:** $Z\hat{X}V = 180^\circ - (40^\circ + 50^\circ)$ (\angle in a straight line)

(ii) Required To Calculate: $Z\hat{V}X$ Solution:

$$\tan Z\hat{V}X = \frac{15}{8}$$

$$\therefore Z\hat{V}X = \tan^{-1}\left(\frac{15}{8}\right)$$

$$= 61.9^{\circ} \text{ (to the nearest 0.1^{0})}$$

- (iii) Required To Calculate: The length VZ Solution: $VZ^2 = (8)^2 + (15)^2$ (Pythagoras' Theorem) $\therefore VZ = \sqrt{64 + 225}$ $= \sqrt{289}$
- (iii) **Required To Calculate:** the bearing from V to XSolution:

The bearing of V from $X = 270^{\circ} + 40^{\circ}$ = 310°

= 17 m

5. a. **Data:**
$$f(x) = \frac{2x+5}{x-4}$$
 and $g(x) = 2x-3$

(i) Required To Calculate: The value of g(4)Solution: g(4) = 2(4) - 3= 8 - 3= 5

(ii) **Required To Calculate:** The value of fg(2)Solution:

$$g(2) = 2(2) - 3$$

= 4 - 3
= 1
∴ $fg(2) = f(1)$
= $\frac{2(1) + 5}{1 - 4}$
= $\frac{7}{-3}$
= $-\frac{7}{3}$

(iii) Required To Calculate: $g^{-1}(7)$ Solution: g(x) = 2x - 3Let y = 2x - 3y + 3 = 2x

 $x = \frac{y+3}{2}$

Replace *y* by *x*

and
$$g^{-1}(x) = \frac{x+x}{2}$$

and $g^{-1}(7) = \frac{7+3}{2}$

nd $g^{-1}(7) = \frac{7+3}{2}$ = $\frac{10}{2}$

= 5 b. Required To Express: $\frac{3}{x} + \frac{4}{x+1}$ as a single fraction in its simplest form Solution:

5.01

$$\frac{\frac{3}{x} + \frac{4}{x+1}}{\frac{3(x+1) + 4(x)}{x(x+1)}} = \frac{3x+3+4x}{x(x+1)}$$
$$= \frac{7x+3}{x(x+1)} \text{ as a single fraction}$$

c. **Required To Find:** The value of $9^{\frac{1}{2}} \times 8^{\frac{2}{3}} \times 4^{0}$ Solution: $9^{\frac{1}{2}} \times 8^{\frac{2}{3}} \times 4^{0} = \sqrt{9} \times \sqrt[3]{8^{2}} \times 1$

$$\overline{2} \times 8^{\overline{3}} \times 4^{0} = \sqrt{9} \times \sqrt[3]{8^{2}} \times 1$$
$$= 3 \times \sqrt[3]{64} \times 1$$
$$= 3 \times 4 \times 1$$
$$= 12$$

6. a. **Data:** Straight line drawn through A(1, 1) and B(5, -2).

(i) **Required To Calculate:** The gradient of the line *AB* **Solution:**

Gradient of
$$AB = \frac{1 - (-2)}{1 - 5}$$
$$= \frac{3}{-4}$$
$$= -\frac{3}{4}$$

Required To Find: The gradient of the line perpendicular to *AB* **Solution:**

Gradient of ANY line perpendicular to $AB = \frac{4}{3}$

(Product of the gradients of perpendicular lines = -1)

(iii) **Required To Find:** the equation of the line passing through D(3, 2) which is perpendicular to AB. **Solution:**

C V

Equation of the line through D and perpendicular to AB is

 $\frac{y-2}{x-3} = \frac{4}{3}$ $y-2 = \frac{4}{3}x-4$ $y = \frac{4}{3}x-2$

is of the form y = mx + c, where $m = \frac{4}{3}$ and c = -2.

- b. **Data:** Coordinates of the 3 vertices of a triangle named A.
 - (i) **Required To Draw:** Triangle A with coordinates (2, 1), (3, 3) and (4, 3). **Solution:**

(ii) **Required To Draw:** Triangle B, which is the reflection of Triangle A in the line y = -1.

Solution:

Coordinates of the vertices of B are (2, -3), (3, -5) and (4, -5)

FAS-PASS Maths

(iii) **Required To Draw:** Triangle C which is the translation of Triangle A by the vector $\begin{pmatrix} -4\\ 2 \end{pmatrix}$.

Solution:

$$A \xrightarrow{T = \begin{pmatrix} -4 \\ 2 \end{pmatrix}} C$$

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} \xrightarrow{\begin{pmatrix} -4 \\ 2 \end{pmatrix}} \begin{pmatrix} 2 - 4 \\ 1 + 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 3 \end{pmatrix} \xrightarrow{\begin{pmatrix} -4 \\ 2 \end{pmatrix}} \begin{pmatrix} 4 - 4 \\ 3 + 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 3 \end{pmatrix} \xrightarrow{\begin{pmatrix} -4 \\ 2 \end{pmatrix}} \begin{pmatrix} 3 - 4 \\ 3 + 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$

: Coordinates of the vertices of C are (-2, 3), (-1, 5) and (0, 5)

- 7. Data: Diagram of a cumulative frequency curve for the marks on a test by 80 students.
 - (i) **Required to Find:** The number of students who scored less than 23 marks **Solution:**

The vertical at 23 corresponds to the horizontal at 52. Hence 52 candidates scored less than 23 marks.

(ii) Required To Find: the number of students who scored more than 17 marks.
 Solution:

The vertical at 17 corresponds to the horizontal at 26. \therefore Number of candidates who scored more than 17 marks = 80 - 26 = 54.

(iii) **Required To Find:** the inter-quartile range of the marks scored. **Solution:**

The cumulative frequency value of 20 corresponds to a mark of 15 (lower quartile, Q_1).

The cumulative frequency value of 60 corresponds to a mark of 25 (upper Quartile, Q₃).

:. Interquartile range = $Q_3 - Q_1$ (Upper quartile – Lower quartile) = 25 - 15= 10

(iv) Required To Calculate: the probability that a randomly chosen student scored between 17 and 23 marks.Solution:

 $P(\text{student scored between 17 and } 23) = \frac{\text{No. of students scoring between 17 and } 23}{\text{Total no. of students}}$

(v) **Required to Find:** the value of x if 30 students scored more than x marks **Solution:**

If 30 students scored more than x, then x is the horizontal value that

corresponds to a vertical (cumulative frequency) value of (80 - 50) = 30

$$x \approx 22\frac{1}{2}$$

- 8. **Data:** Diagrams showing the link from a chain.
 - a. **Required To Calculate:** the volume of a single link of chain **Solution:**

Volume of a single link = External volume – Internal volume

 $= 164.9 \text{ mm}^3$ = 165 mm³ to 3 significant figures

b. **Required To Prove:** the length of chain is 16 mm + 14 mm. **Solution:**

Length of link = PQRST (as shown on the diagram) QR = RS = 7 mm (radius of inner circle of link) PQ = ST = 8 mm (radius of outer circle of link) \therefore Length of link = 2(8) + 2(7) mm= 16 mm + 14 mm

c. **Required To Complete:** a table showing the length of the chain formed when rings are linked in a straight line.

Solution:

No. of rings, <i>n</i>	Length of chain, L		
1	16		
2	30		
3	44		

Trying to obtain a pattern or sequence between L and n.

$$n = 1 2, 3,...$$

L = 16 30, 44,...
L = 16+ 14(0) 16 + 14(1), 16 + 14(2),...
∴ When n = 6 L = 16 + 14(6 - 1) = 86
When L = 170 170 = 16 + 14(n - 1)
14(n - 1) = 154
n - 1 = $\frac{154}{14}$
n = 1 + 11
n = 12

No. of rings, <i>n</i>	Length of chain, L				
1	16				
2	30 C				
3	44				
:					
6	(86)				
•					
(12)	170				

Section II

Data: $x^2 = 4 - y$ 9. a. x = y + 2**Required to Calculate:** *x* and *y* Solution: Let $x^2 = 4 - y$...(1) and x = y + 2...(2) $\therefore y = 4 - x^2$ Substitute in (2) $x = (4 - x^{2}) + 2$ $x - (4 - x^{2}) - 2 = 0$ $x^{2} + x - 4 - 2 = 0$ $x^2 + x - 6 = 0$ (x+3)(x-2)=0And x = -3 or 2 When x = -3 $y = 4 - (-3)^2 = 4 - 9 = 5$ When x = 2 $y = 4 - (2)^2 = 4 - 4 = 0$ Hence, x = -3 and y = -5 **OR** x = 2 and y = 0 con

b. Required to Prove: $(2x-3)(2x+3) - (x-4)^2 \equiv 3x^2 + 8x - 25$ Proof: L.H.S $(2x-3)(2x+3) - (x-4)^2$ $= (4x^2 - 6x + 6x - 9) - (x^2 - 4x - 4x + 16)$ $= 4x^2 - 9 - x^2 + 8x - 16$ $= 3x^2 + 8x - 25$ = RHSQ.E.D

c.

(i) **Required to Express:** $3x^2 + 8x - 25$ in the form $a(x+h)^2 + k$ Solution: $3x^2 + 8x - 25$

nauno

$$3\left(x^{2} + \frac{8}{3}x\right) - 25$$

$$3\left(x + \frac{4}{3}\right)^{2} + ?$$

$$= 3\left(x^{2} + \frac{8}{3}x + \frac{16}{9}\right) + 6$$

$$= 3x^{2} + 8x + 5\frac{1}{3} + \frac{-30\frac{1}{3}}{-25}$$

$$= 3\left(x + \frac{4}{3}\right)^2 - 30\frac{1}{3}$$

is of the form $a(x+h)^2 + k$ where $a = 3 \in \Re$ $h = \frac{4}{3} \in \Re$ and $k = -30\frac{1}{3} \in \Re$

(ii) **Required To Find:** the minimum value of $3x^2 + 8x - 25$ Solution:

$$3x^{2} + 8x - 25 \equiv 3\left(x + \frac{4}{3}\right)^{2} - 30\frac{1}{3}$$

$$3\left(x+\frac{4}{3}\right)^2 \ge 0 \quad \forall x$$

:. Minimum value of the function is $-30\frac{1}{3}$.

ALTERNATIVE METHOD

For a quadratic $ax^2 + bx + c$, a maximum or minimum value of the function occurs at $x = \frac{-b}{2a}$.

The minimum value of the function occurs at $x = \frac{-(8)}{2(3)} = -\frac{4}{3}$

When
$$x = -\frac{4}{3}$$
, the minimum value is $3\left(-\frac{4}{3}\right)^2 + 8\left(-\frac{4}{3}\right) - 25 = -30\frac{1}{3}$

Marin

d.
$$3x^{2} + 8x - 25 = 0$$
$$x = \frac{-8 \pm \sqrt{(8)^{2} - 4(3)(-25)}}{2(3)}$$
$$= \frac{-8 \pm \sqrt{64 + 300}}{6}$$
$$= \frac{-8 \pm \sqrt{364}}{6}$$
$$= 1.84 \text{ or } -4.51$$
$$x = 1.8 \text{ or } -4.5 \text{ to 1 decimal place}$$

OR

$$3x^{2} + 8x - 25 = 0$$

$$\therefore 3\left(x + \frac{4}{3}\right)^{2} - 30\frac{1}{3} = 0$$

$$3\left(x + \frac{4}{3}\right)^{2} = 30\frac{1}{3}$$

$$\left(x + \frac{4}{3}\right)^{2} = \frac{91}{9}$$

$$x + \frac{4}{3} = \pm \sqrt{\frac{91}{9}}$$

$$x = -\frac{4}{3} \pm \frac{\sqrt{91}}{3}$$

$$x = \frac{-4 \pm \sqrt{91}}{3}$$

$$= 1.84 \text{ or } -4.51$$

$$x = 1.8 \text{ or } -4.5 \text{ to 1 decimal place}$$

- 10. **Data:** Information about the numbers, prices and special conditions involving calculators and folders bought for a school.
 - (i) **Required To Find:** An inequality to represent the information given. **Solution:**

No. of calculators bought = xNo. of calculators bought is at least 5 $\therefore x \ge 5 \dots (1)$

(ii) **Required To Find:** An inequality to represent the information given. **Solution:**

The number of folders must be at least twice the number of calculators.

 $2 \times x$

$$y \ge 2x \dots (2)$$
 \geq

(iii) **Required To Find:** An inequality to represent the information given. **Solution:**

Cost of x calculators at \$20 each and y folders at \$5 each = $(20 \times x) + (5 \times y) = 20x + 5y$

Amount available for spending is not more than \$300 $\therefore 20x + 5y \le 300$

÷5

 $4x + y \le 60...(3)$

(iii) Required To Draw: the lines of the three equalities and hence shade the region that satisfies all three inequalities, stated above.
 Solution:

The line x = 5 is a vertical straight line.

The region which satisfies $x \ge 5$ is

Finding two points on the line y = 2x so as to draw the line. The line y = 2x passes through the origin (0, 0). When x = 5 y = 2(5)

The line y = 2x passes through (5, 10).

The side that makes the larger angle satisfies the \geq region.

Therefore, the region which satisfies $y \ge 2x$ is

Finding two points on the line 4x + y = 60. When x = 0 4(0) + y = 60y = 60

The line 4x + y = 60 passes through the point (0, 60). When y = 0 4x + 0 = 60

 $x = \frac{60}{4}$ = 15

The line 4x + y = 60 passes through the point (15, 0).

The side that makes the smaller angle satisfies the \leq region. Therefore, the region which satisfies $4x + y \leq 60$ is

Therefore, the region which satisfies all three inequalities is the area where all three shaded regions, shown above, overlap.

FAS-PASS Maths

This is identified as the feasible region is ABC.

(v) **Required To Find:** an expression in terms of x and y for the total profit,

P.

Solution:

- Total profit = P Profit of x calculators at \$6 each and y folders at \$2 each is $(x \times 6) + (y \times 2) = 6x + 2y$ $\therefore P = 6x + 2y$
- (vi) Required To Find: the coordinates of the vertices of the shaded region.
 Solution:

Coordinates of the vertices of the shaded region are A (5, 10), B (5, 40), C (10, 20)

(vii) Required To Calculate: maximum profit.

Solution:

 $P_{\rm max}$ is to be found by testing the coordinates of the vertices of the feasible region.

The point A obviously need not be tested as it has both lower x and y values than the other points.

Point B When x = 5 and y = 40P = 6(5) + 2(40)= \$110Point C When x = 10 and y = 20

P = 6(10) + 2(20)

= \$100 ∴ Maximum profit is \$110, when 10 calculators and 20 folders are sold.

11. a. **Data:** Diagram illustrating a vertical pole standing on horizontal ground.

(i) **Required To Calculate:** the angle of elevation from *U* to *S*. **Solution:**

 $U\hat{S}R = 180^\circ - 120^\circ$ (angles in a straight line) = 60°

 \therefore Angle of elevation of U from S is 60° (as illustrated)

(ii) **Required To Calculate:** the length to *UT* **Solution:**

 $S\hat{U}T = 180^{\circ} - (120^{\circ} + 40^{\circ})$ (sum of angles in a triangle total 180°) $= 20^{\circ}$ $\frac{15}{\sin 20^{\circ}} = \frac{UT}{\sin 120^{\circ}}$ (sine rule)

$$\therefore UT = \frac{15 \times \sin 120^{\circ}}{\sin 20^{\circ}}$$
$$= 37.98 \text{ m}$$
$$= 38.0 \text{ m to 1 decimal place}$$

(iii) **Required To Calculate:** the length of *RU* **Solution:**

$$\sin 40^\circ = \frac{RU}{38}$$

$$\therefore RU = 37.98 \sin 40^\circ$$

$$= 24.41 \text{ m}$$

$$= 24.4 \text{ m to 1 decimal place}$$

b. **Data:** Diagram showing a circle, centre *O*. *LMNR* is a tangent. *LSOP*, *NOQ* and *MSQ* are straight lines. $S\hat{P}N = 35^{\circ}$

(i) **Required to Calculate:** Angle *SON* **Solution:**

$$S\hat{O}N = 2(35^{\circ}) = 70^{\circ}$$

(The angle subtended by a chord at the centre of a circle is twice the angle subtended at the circumference, standing on the same arc.)

(ii) **Required To Calculate:** Angle *NMQ* Solution:

 $\hat{ONM} = 90^{\circ}$

(The angle made by the tangent to a circle and radius, at the point of contact is 90°)

 $\therefore \hat{ONM} = 90^{\circ}$ $\hat{SQN} = 35^{\circ}$

(The angles subtended by chord *SN*, at the circumference of a circle, standing on the same arc are equal.)

:.
$$N\hat{M}Q = 180^{\circ} - (90^{\circ} + 35^{\circ})$$

= 55°

(Sum of the angles in a triangle is 180°)

(iii) Required To Calculate: $\angle PLN$ Solution: In $\triangle OLN$ $OLN = 180^{\circ} - (90^{\circ} + 70^{\circ})$ $= 20^{\circ}$

(Sum of the angles in a triangle is 180°.)

(iv) Required To Calculate: ∠SNM Solution:

 $\hat{SNM} = 35^{\circ}$

(The angle made by the tangent to a circle and a chord, at the point of contact, is equal to the angle in the alternate segment.)

12.a. This part is not done since it involves latitude and longitude (Earth Geometry) which has been removed from the syllabus.

- 12. b. $y = 2 \cos x$
 - (i) **Required To Complete:** the table of values for $y = 2 \cos x$ Solution:

x	0°	30°	60°	90°	120°	150°	180°
y	(1)	1.1	1.5	(2)	2.5	(2.9)	3

When
$$x = 0$$

 $y = 2 - \cos(0)$
 $= 2 - 1$
 $= 1$
When $x = 90^{\circ}$
 $y = 2 - \cos(90^{\circ})$
 $= 2 - 0$
 $= 2$
When $x = 150^{\circ}$
 $y = 2 - \cos(150^{\circ})$
 $= 2 - (-0.87)$
 $= 2.9$

(iii) **Required To Draw:** the graph of $y = 2 - \cos x$ Solution:

(ii) **Required To Find:** the value of x for which $2 - \cos x = 1.8$. Solution: Draw the horizontal, y = 1.8

NNN

where x = 4 and y = -3

(ii) Required To Calculate: $|\overrightarrow{PQ}|$ Solution: $|\overrightarrow{PQ}| = \sqrt{(4)^2 + (-3)^2}$ $= \sqrt{25}$ = 5 units

b. **Data:** Vector diagram with *M* the midpoint of *CE*, \overrightarrow{OF} $\overrightarrow{FE} = 2\overrightarrow{OF}$

If
$$\overrightarrow{FE} = 2\overrightarrow{OF}$$
, then $\overrightarrow{FE} = 2\underline{a}$ and $\overrightarrow{OE} = \underline{a} + 2\underline{a} = 3\underline{a}$

(i) **Required To Express:** \overrightarrow{CF} in terms of \underline{a} and \underline{b} **Solution:** $\overrightarrow{CF} = \overrightarrow{CO} + \overrightarrow{OF}$ $= -(\underline{b}) + \underline{a}$ $= \underline{a} - \underline{b}$

(ii) **Required To Express:** \overrightarrow{CE} in terms of \underline{a} and \underline{b} **Solution:** $\overrightarrow{CE} = \overrightarrow{CO} + \overrightarrow{OE}$ $= -\underline{b} + 3\underline{a}$

$$=3\underline{a}-\underline{b}$$

and

Required To Express: \overrightarrow{CM} in terms of <u>a</u> and <u>b</u> (iii) Solution:

$$\overrightarrow{CM} = \frac{1}{2} \overrightarrow{CE}$$
$$= \frac{1}{2} (3\underline{a} - \underline{b})$$
$$= 1\frac{1}{2} \underline{a} - \frac{1}{2} \underline{b}$$

Required To Express: \overrightarrow{MG} in terms of \underline{a} and \underline{b} and k(iv) Solution: no. No.

$$\overrightarrow{CG} = k\overrightarrow{CF}$$

$$\therefore \overrightarrow{CG} = k(\underline{a} - \underline{b})$$

$$\overrightarrow{MG} = \overrightarrow{MC} + \overrightarrow{CG}$$

$$= -\left(1\frac{1}{2}\underline{a} - \frac{1}{2}\underline{b}\right) + k(\underline{a} - \underline{b})$$

$$= -1\frac{1}{2}\underline{a} + \frac{1}{2}\underline{b} + k\underline{a} - k\underline{b}$$

$$= \left(k - 1\frac{1}{2}\right)\underline{a} + \left(\frac{1}{2} - k\right)\underline{b}$$

Required To Calculate: the value of k for which $\overrightarrow{MG} = \overrightarrow{CO}$ (v) Solution:

$$\overrightarrow{MG} = \overrightarrow{CO}$$
$$\therefore \left(k - 1\frac{1}{2}\right)\underline{a} + \left(\frac{1}{2} - k\right)\underline{b} = -b$$
$$\equiv 0\underline{a} + \left(-\underline{b}\right)$$

Equating components

$$k - 1\frac{1}{2} = 0$$

$$k = 1\frac{1}{2}$$
OR
$$\frac{1}{2} - k = -1$$

$$k = 1\frac{1}{2}$$

14. a. (i) **Data:**
$$M = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$$

Required To Find: M^{-1}
Calculation:
Det $M = (2 \times 3) - (1 \times -1)$
 $= 6 + 1 = 7$
 $M^{-1} = \frac{1}{7} \begin{pmatrix} 3 & -(1) \\ -(-1) & 2 \end{pmatrix}$
 $= \begin{pmatrix} \frac{3}{7} & -\frac{1}{7} \\ \frac{1}{7} & \frac{2}{7} \end{pmatrix}$

(ii) **Required To Calculate:** the values of x and y for which $M\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 12 \\ 1 \end{pmatrix}$

Solution:

$$M\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 12 \\ 1 \end{pmatrix}$$

$$\times M^{-1}$$

$$M \times M^{-1} \begin{pmatrix} x \\ y \end{pmatrix} = M^{-1} \begin{pmatrix} 12 \\ 1 \end{pmatrix}$$

$$I\begin{pmatrix} x \\ y \end{pmatrix} = M^{-1} \begin{pmatrix} 12 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{3}{7} & -\frac{1}{7} \\ \frac{1}{7} & \frac{2}{7} \end{pmatrix} \begin{pmatrix} 12 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} \begin{pmatrix} \frac{3}{7} \times 12 \end{pmatrix} & \begin{pmatrix} -\frac{1}{7} \times 1 \end{pmatrix} \\ \begin{pmatrix} \frac{1}{7} \times 12 \end{pmatrix} & \begin{pmatrix} \frac{2}{7} \times 1 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

Equating corresponding entries, x = 5 and y = 2

b. **Data:** Transformation matrix, $T = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$ A and B are mapped onto A' and B' $A \xrightarrow{T} A'$

(i) Required To Calculate: the values of
$$p$$
, q , r and s .
Solution:
 $\begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} -4 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$
 $\begin{pmatrix} -4p+2q \\ -4r+2s \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$
Equating corresponding entries
 $-4p+2q=-2$
 $\div -2$
 $2p-q=1...(1)$
 $-4r+2s=4$
 $\div -2$
 $2r-s=-2...(2)$
Similarly
 $B \xrightarrow{r} \rightarrow B'$
 $\begin{pmatrix} p & q \\ -2 \\ r & s \end{pmatrix} \begin{pmatrix} -2 \\ 5 \end{pmatrix} = \begin{pmatrix} -5 \\ 2 \end{pmatrix}$
 $\begin{pmatrix} -2p+5q \\ -2r+5s \end{pmatrix} = \begin{pmatrix} -5 \\ 2 \end{pmatrix}$
Equating corresponding entries
 $-2p+5q=-5...(3)$
 $-2r+5s=2...(4)$
(1) + (3)
 $2p-q=1$
 $-\frac{2p+5q=-5}{4q=-4}$
 $q=-1$
Substituting in (1)
 $-4p+2=-2$
 $-4p=0$
 $p=0$
(2) + (4)

$$\frac{(2) + (4)}{2r - s} = -2$$
$$\frac{-2r + 5s = 2}{4s = 0}$$
$$\therefore s = 0$$

2

Substitute s = 0 into (2) 2r - 0 = -2 r = -1 $\therefore p = 0, q = -1, r = -1$ and s = 0

(ii) **Required To Calculate:** The coordinates of the point *C*. **Solution:**

$$C \xrightarrow{-1} C'$$

$$\therefore \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -2 \\ 2 \end{pmatrix} = \begin{pmatrix} (0 \times -2) + (-1 \times 2) \\ (-1 \times -2) + (0 \times 2) \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 2 \end{pmatrix}$$

$$\therefore C' = (-2, 2)$$