CSEC ADD MATHS 2019

SECTION I

Answer BOTH questions.

ALL working must be clearly shown.

1. (a) The function f is such that $f(x)=2 x^{3}+7 x^{2}+3 x$.
(i) Determine all the linear factors of $f(x)$.

SOLUTION:
Data: $f(x)=2 x^{3}+7 x^{2}+3 x$
Required to determine: All the linear factors of $f(x)$.

Solution:

$$
\begin{aligned}
f(x) & =2 x^{3}+7 x^{2}+3 x \\
& =x\left(2 x^{2}+7 x+3\right) \\
& =x(2 x+1)(x+3)
\end{aligned}
$$

So the linear factors of $f(x)$ are $x, 2 x+1$ and $x+3$.
(ii) Compute the roots of the function $f(x)$.
(A function does NOT have roots. An equation may have roots or solutions. So, we let $f(x)=0$.)

SOLUTION:

Required to find: The roots of $f(x)=0$. Solution:

$$
\begin{aligned}
f(x) & =2 x^{3}+7 x^{2}+3 x \\
& =x(2 x+1)(x+3)
\end{aligned}
$$

If $f(x)=0$ then $x(2 x+1)(x+3)=0$
and the roots will then be $x=0$ or $-\frac{1}{2}$ or -3
(b) Two functions are such that $g(x)=x^{2}-x$ and $h(x)=2 x-3$.
(i) Determine $g h(x)$.

SOLUTION:
Data: $g(x)=x^{2}-x$ and $h(x)=2 x-3$
Required to determine: $g h(x)$

Solution:

$$
\begin{aligned}
g(x) & =x^{2}-x \\
\therefore g h(x) & =[h(x)]^{2}-h(x) \\
& =(2 x-3)^{2}-(2 x-3) \\
& =4 x^{2}-6 x-6 x+9-2 x+3 \\
g h(x) & =4 x^{2}-14 x+12
\end{aligned}
$$

(ii) Given that $\operatorname{li} g(x)=2 x^{2}-2 x-3$, show that the values of x, for which $h g(x)=0$, can be expressed as $\frac{1 \pm \sqrt{7}}{2}$.

SOLUTION:

Data: $\operatorname{hg}(x)=2 x^{2}-2 x-3$
Required to show: The solutions of $h g(x)=0$ are $\frac{1 \pm \sqrt{7}}{2}$.

Solution:

When $\operatorname{hg}(x)=0$

$$
\begin{aligned}
2 x^{2}-2 x-3 & =0 \\
x & =\frac{-(-2) \pm \sqrt{(-2)^{2}-4(2)(-3)}}{2(2)} \\
& =\frac{2 \pm \sqrt{4+24}}{4} \\
& =\frac{2 \pm \sqrt{28}}{4} \\
& =\frac{2 \pm 2 \sqrt{7}}{4} \\
& =\frac{2(1 \pm \sqrt{7})}{2(2)} \\
& =\frac{1 \pm \sqrt{7}}{2}
\end{aligned}
$$

Q.E.D.

(c) Solve $3 x \log 2+\log 8^{x}=2$.

SOLUTION:

Data: $3 x \log 2+\log 8^{x}=2$
Required to find: x

Solution:

$3 x \log 2+\log 8^{x}=2$
$3 x \log 2+\log \left(2^{3}\right)^{x}=2$
$3 x \log 2+\log 2^{3 x}=2$
$3 x \log 2+3 x \log 2=2$
$(3 x+3 x) \log 2=2$
$(6 x) \log 2=2$
$6 x=\frac{2}{\log 2}$
$x=\frac{2}{6 \log 2}=\frac{1}{3 \log 2}$
A value of x is only possible if the base of the terms in logs is given.

For instance, if the base is 10, then	For instance, if the base is 2, then
$x=\frac{1}{3 \log _{10} 2}=\frac{1}{0.903}=1.11$	$x=\frac{1}{3 \log _{2} 2}=\frac{1}{3}$

2. (a) (i) Express $f(x)=-2 x^{2}-7 x-6$ in the form $a(x+h)^{2}+k$.

SOLUTION:

Data: $f(x)=-2 x^{2}-7 x-6$
Required to express: $f(x)$ in the form $a(x+h)^{2}+k$.

Solution:

$$
-2 x^{2}-7 x-6
$$

$$
=-2\left(x^{2}+\frac{7}{2} x\right)-6
$$

$$
=-2\left[\left(x+\frac{7}{4}\right)^{2}-\frac{49}{16}\right]-6
$$

$$
=-2\left(x+\frac{7}{4}\right)^{2}+\frac{49}{8}-6
$$

$$
=-2\left(x+\frac{7}{4}\right)^{2}+\frac{1}{8}
$$

So, $-2 x^{2}-7 x-6=-2\left(x+\frac{7}{4}\right)^{2}+\frac{1}{8}$ is of the form $a(x+h)^{2}+k$, where $a=-2, h=\frac{7}{4}$ and $k=\frac{1}{8}$.

Alternative Method:

$$
\begin{aligned}
a(x+h)^{2}+k & =a(x+h)(x+h)+k \\
& =a\left(x^{2}+2 h x+h^{2}\right)+k \\
& =a x^{2}+2 a h x+a h^{2}+k
\end{aligned}
$$

So $-2 x^{2}-7 x-6 \equiv a x^{2}+2 a h x+\left(a h^{2}+k\right)$
Equating coefficients:

$$
\begin{aligned}
& a=-2, \quad 2 a h=-7, \\
& 2(-2) h=-7 \\
& a h^{2}+k=-6 \\
& -2\left(\frac{7}{4}\right)^{2}+k=-6 \\
& -2\left(\frac{49}{16}\right)+k=-6 \\
& -6 \frac{1}{8}+k=-6 \\
& k=\frac{1}{8}
\end{aligned}
$$

So, $-2 x^{2}-7 x-6 \equiv-2\left(x+\frac{7}{4}\right)^{2}+\frac{1}{8}$
(ii) State the maximum value of $f(x)$.

SOLUTION:

Required to state: The maximum value of $f(x)$.
Solution:

$$
\begin{gathered}
f(x)=-2 x^{2}-7 x-6 \\
=-2\left(x+\frac{7}{4}\right)^{2}+\frac{1}{8} \\
\uparrow \\
\geq 0 \forall x
\end{gathered}
$$

\therefore The maximum value of $f(x)=-2(0)+\frac{1}{8}$
The maximum value of $f(x)$ is $\frac{1}{8}$.
(iii) State the value of x for which $f(x)$ is a maximum.

SOLUTION:

Required to state: The value of x for which $f(x)$ is a maximum Solution:
The maximum value of $f(x)$ occurs when $-2\left(x+\frac{7}{4}\right)^{2}=0$
i.e when $x=-\frac{7}{4}$
(iv) Use your answer in (a) (i) to determine all values of x when $f(x)=0$.

SOLUTION:

Required to determine: The values of x when $f(x)=0$.
Solution:

$$
\begin{gathered}
f(x)=-2\left(x+\frac{7}{4}\right)^{2}+\frac{1}{8} \\
-2\left(x+\frac{7}{4}\right)^{2}+\frac{1}{8}=0 \\
-2\left(x+\frac{7}{4}\right)^{2}=-\frac{1}{8} \\
\left(x+\frac{7}{4}\right)^{2}=\frac{1}{16} \\
x+\frac{7}{4}= \pm \frac{1}{4} \\
x=-\frac{7}{4} \pm \frac{1}{4} \\
x=\frac{-7 \pm 1}{4} \\
x=\frac{-7+1}{4} \text { or } \frac{-7-1}{4} \\
=-\frac{6}{4} \text { or }-\frac{8}{4} \\
=-1 \frac{1}{2} \text { or }-2
\end{gathered}
$$

(v) Sketch the function $f(x)$ and show your solution set to (a) (iv) when $f(x)<0$.

SOLUTION:

Required to sketch: The function $f(x)$ and write the solution of $f(x)<0$.

Solution:

$f(0)=-6$

For $f(x)<0$:

FAS-PASS
 Maths

The solution set for $f(x)<0$ is $\left\{x: x<-2 \cup x>-1 \frac{1}{2}\right\}$.
(b) A geometric series can be represented by $\frac{y}{x}+\frac{y^{2}}{x^{3}}+\frac{y^{3}}{x^{5}}+\ldots$

Prove that $S_{\infty}=x y\left(x^{2}-y\right)^{-1}$.

SOLUTION:

Data: $\frac{y}{x}+\frac{y^{2}}{x^{3}}+\frac{y^{3}}{x^{5}}+\ldots$ is a geometric series.
Required to prove: $S_{\infty}=x y\left(x^{2}-y\right)^{-1}$
Proof:
For the geometric series $\frac{y}{x}+\frac{y^{2}}{x^{3}}+\frac{y^{3}}{x^{5}}+\ldots$

$$
\begin{aligned}
\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}} & =\frac{y^{2}}{x^{3}} \div \frac{y}{x} \\
& =\frac{y^{2}}{x^{3}} \times \frac{x}{y} \\
& =\frac{y}{x^{2}}
\end{aligned}
$$

The series is a geometric progression with first term, $a=\frac{y}{x}$ and with a common ratio of $\frac{y}{x^{2}}$.

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} \quad,|r|<1 \\
& =\frac{\frac{y}{x}}{1-\frac{y}{x^{2}}} \\
& =\frac{\frac{y}{x}}{\frac{x^{2}-y}{x^{2}}} \\
& =\frac{y}{x} \times \frac{x^{2}}{x^{2}-y} \\
& =\frac{x y}{x^{2}-y} \\
& =x y\left(x^{2}-y\right)^{-1}
\end{aligned}
$$

Q.E.D.

SECTION II

Answer BOTH questions.

ALL working must be clearly shown.

3. (a) A circle with center $(1,-1)$ passes through the point $(4,3)$.
(i) Calculate the radius of the circle.

SOLUTION:

Data: A circle has center $(1,-1)$ and passes through $(4,3)$.
Required to calculate: The radius of the circle Calculation:

Length of the radius $=\sqrt{(4-1)^{2}+(3-(-1))^{2}}$

$$
\begin{aligned}
& =\sqrt{(3)^{2}+(4)^{2}} \\
& =\sqrt{25} \\
& =5 \text { units }
\end{aligned}
$$

(ii) Write the equation of the circle in the form $x^{2}+y^{2}+2 f x+2 g y+c=0$.

SOLUTION:

Required to write: The equation of the circle in the form
$x^{2}+y^{2}+2 f x+2 g y+c=0$.
Solution: Recall for

The equation is $(x-a)^{2}+(y-b)^{2}=r^{2}$
So, the equation of the given circle is

$$
\begin{aligned}
(x-1)^{2}+(y-(-1))^{2} & =(5)^{2} \\
x^{2}-2 x+1+y^{2}+2 y+1 & =25 \\
x^{2}+y^{2}-2 x+2 y-23 & =0 \text { and which is of the form } \\
x^{2}+y^{2}+2 g x+2 f y+c & =0, \text { where } g=-1, f=1 \text { and } c=-23 .
\end{aligned}
$$

(iii) Determine the equation of the tangent to the circle at the point $(4,3)$.

SOLUTION:

Required to determine: The equation of the tangent to the circle at the point (4, 3).

Solution:

The angle made by a tangent to a circle and a radius at the point of contact is a right angle.

Gradient of the radius:
$=\frac{3-(-1)}{4-1}=\frac{3+1}{3}=\frac{4}{3}$
\therefore The gradient of the tangent $=-\frac{3}{4}$ since the product of the gradients of perpendicular lines is -1 .

The equation of the tangent to the circle at $(4,3)$ is

$$
\begin{aligned}
\frac{y-3}{x-4} & =-\frac{3}{4} \\
4(y-3) & =-3(x-4) \\
4 y-12 & =-3 x+12 \\
4 y & =-3 x+24
\end{aligned}
$$

(b) Two vectors \mathbf{p} and \mathbf{q} are such that $\mathbf{p}=8 \mathbf{i}+2 \mathbf{j}$ and $\mathbf{q}=\mathbf{i}-4 \mathbf{j}$.

(i) Calculate p.q.

Data: $\mathbf{p}=8 \mathbf{i}+2 \mathbf{j}$ and $\mathbf{q}=\mathbf{i}-4 \mathbf{j}$, where \mathbf{p} and \mathbf{q} are two vectors.
Required to calculate: p.q

Calculation:

$$
\begin{aligned}
\mathbf{p} \cdot \mathbf{q} & =(8 \times 1)+(2 \times-4) \\
& =8-8 \\
& =0
\end{aligned}
$$

(ii) State the angle between the two vectors \mathbf{p} and \mathbf{q}.

SOLUTION:

Required to state: The angle between vectors \mathbf{p} and \mathbf{q}
Solution:

Recall if $\mathbf{a} \cdot \mathbf{b}=0$ then \mathbf{a} is perpendicular to \mathbf{b}.
Since $\mathbf{p . q}=0$ then the angle between \mathbf{p} and \mathbf{q} is 90°.
(c) The position vector $\mathbf{a}=4 \mathbf{i}-7 \mathbf{j}$. Find the unit vector in the direction of \mathbf{a}.

SOLUTION:

Data: $\mathbf{a}=4 \mathbf{i}-7 \mathbf{j}$ is a position vector.
Required to find: The unit vector in the direction of a.

Solution:

Any vector in the direction of \mathbf{a} will be of the form $\alpha(4 \mathbf{i}-\mathbf{j})$ where α is a scalar. A unit vector has a magnitude of 1

$$
\text { So } \begin{aligned}
&|\alpha(4 i-7 j)|=1 \\
&|4 \alpha i-7 \alpha j|=1 \\
& \sqrt{(4 \alpha)^{2}+(-7 \alpha)^{2}}=1 \\
& \sqrt{65 \alpha^{2}}=1 \\
& \sqrt{65} \alpha=1 \\
& \alpha=\frac{1}{\sqrt{65}}
\end{aligned}
$$

So, the unit vector in the direction of \mathbf{a} is

$$
\frac{1}{\sqrt{65}}(4 i-7 j)=\frac{4}{\sqrt{65}} i-\frac{7}{\sqrt{65}} j
$$

4. (a) A compass is used to draw a sector of radius 6 cm and area $11.32 \mathrm{~cm}^{2}$.
(i) Determine the angle of the sector in radians.

SOLUTION:

Data: A sector of radius 6 cm and area $11.32 \mathrm{~cm}^{2}$ is drawn using a compass.
Required to determine: The angle of the sector in radians Solution:

Let the sector be $A O B$ and the angle of the sector be θ radians.
Recall: $A=\frac{1}{2} r^{2} \theta \quad(A=$ area, $r=$ radius and $\theta=$ angle in radians $)$
So $11.32=\frac{1}{2}(6)^{2} \times \theta$

$$
\begin{aligned}
& \theta=\frac{11.32 \times 2}{36} \text { radians } \\
&=0.6288 \text { radians } \\
&= \\
& \approx 0.629 \text { radians }
\end{aligned}
$$

(ii) Calculate the perimeter of the sector.

SOLUTION:

Required to calculate: The perimeter of the sector Calculation:
Perimeter of the sector $A O B=(6+$ arc length $A B+6) \mathrm{cm}$

$$
\begin{aligned}
& =6+(6 \times 0.6288)+6 \\
& =12+6(0.6288) \\
& =15.7728 \mathrm{~cm} \\
& =15.773 \mathrm{~cm} \text { to } 3 \text { decimal places }
\end{aligned}
$$

(b) A right-angled triangle $X Y Z$ has an angle, θ, where $\sin \theta=\frac{\sqrt{5}}{5}$. Without evaluating θ, calculate the exact value (in surd form if applicable) of
(i) $\cos \theta$

SOLUTION:

Data: Right-angled triangle $X Y Z$ has an angle θ such that $\sin \theta=\frac{\sqrt{5}}{5}$.

Required to calculate: $\cos \theta$ in exact form Calculation:
Assume that θ is acute.

$$
\begin{aligned}
\operatorname{adj} & =\sqrt{(5)^{2}-(\sqrt{5})^{2}} \text { Pythagoras' Theorem } \\
& =+\sqrt{25-5} \\
& =+\sqrt{20}
\end{aligned}
$$

$$
\therefore \cos \theta=\frac{\sqrt{20}}{5}
$$

$$
=\frac{\sqrt{4} \sqrt{5}}{5}
$$

$$
=\frac{2 \sqrt{5}}{5} \text { or } \frac{2}{\sqrt{5}} \text { in surd form }
$$

(ii) $\sin 2 \theta$

SOLUTION:

Required to calculate: $\sin 2 \theta$
Calculation:
Since θ is acute, then

$$
\begin{aligned}
\sin 2 \theta & =2 \sin \theta \cos \theta \\
& =2 \frac{\sqrt{5}}{5} \times \frac{2}{\sqrt{5}} \\
& =\frac{4}{5}
\end{aligned}
$$

(c) Show that $\tan ^{2} \theta+1=\frac{1}{\cos ^{2} \theta}$.

SOLUTION:

Required to show: $\tan ^{2} \theta+1=\frac{1}{\cos ^{2} \theta}$

Proof:

Consider the lefthand side:
Recall: $\frac{\sin \theta}{\cos \theta}=\tan \theta$

$$
\begin{aligned}
\tan ^{2} \theta+1 & =\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\frac{1}{1} \\
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta} \\
& =\frac{1}{\cos ^{2} \theta} \\
& =\text { R.H.S. }
\end{aligned}
$$

Q.E.D.

SECTION III

Answer BOTH questions.

ALL working must be clearly shown.

5. (a) The stationary points of a curve are given by $\left(5,11 \frac{2}{3}\right)$ and $(3,15)$.
(i) Derive an expression for $\frac{d y}{d x}$.

SOLUTION:

Data: $\left(5,11 \frac{2}{3}\right)$ and $(3,15)$ are two stationary points on a curve.
Required to find: $\frac{d y}{d x}$

Solution:

$(x-5)$ and $(x-3)$ are factors of $\frac{d y}{d x}=0$.
So, $\frac{d y}{d x}=a(x-5)(x-3)$, where a is a constant

$$
=a x^{2}-8 a x+15 a
$$

(ii) Determine the nature of the stationary points

SOLUTION:

Required to determine: The nature of the stationary points. Solution:
$\frac{d^{2} y}{d x^{2}}=2 a x-8 a$

When $x=5$

$$
\frac{d^{2} y}{d x^{2}}=2 a
$$

>0 (assuming a is a positive constant)
Hence $\left(5,11 \frac{2}{3}\right)$ is a minimum point.
When $x=3$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =-2 a \\
& <0(\text { assuming } a \text { is a positive constant })
\end{aligned}
$$

Hence $(3,15)$ is a maximum point
(iii) Determine the equation of the curve

SOLUTION:

Required to determine: The equation of the curve.
Solution:
Equation of the curve is
$y=\int\left(a x^{2}-8 a x+15 a\right) d x$
$y=\frac{a x^{3}}{3}-4 a x^{2}+15 a x+C$, where C is a constant
$(3,15)$ lies on the curve.
$\therefore 15=9 a-36 a+45 a+C$
$18 a+C=15$
$\left(5,11 \frac{2}{3}\right)$ lies on the curve.
$11 \frac{2}{3}=41 \frac{2}{3} a-100 a+75 a+C$
$11 \frac{2}{3}=16 \frac{2}{3} a+C$
(1) - 2
$3 \frac{1}{3}=1 \frac{1}{3} a$
$\therefore a=2 \frac{1}{2}$
Substituting in $\mathbf{1}$ or 2 will give $C=-30$

So, if we substitute $\mathrm{a}=2 \frac{1}{2}$, then $\frac{d y}{d x}=\frac{5}{2}(x-5)(x-3)$

$$
\begin{aligned}
= & \frac{5 x^{2}}{2}-20 x+\frac{75}{2} \text { and the equation of the curve is } \\
y & =\frac{5}{6} x^{3}-10 x^{2}+37 \frac{1}{2} x-30
\end{aligned}
$$

(b) Differentiate $\sqrt[3]{(2 x+3)^{2}}$ with respect to x, giving your answer in its simplest form.

SOLUTION:

Required to differentiation: $\sqrt[3]{(2 x+3)^{2}}$ with respect to x .

Solution:

Let $y=\sqrt[3]{(2 x+3)^{2}}$

$$
\therefore y=(2 x+3)^{\frac{2}{3}}
$$

Let $t=2 x+3 \quad \frac{d t}{d x}=2$
So $y=t^{\frac{2}{3}} \quad \frac{d y}{d t}=\frac{2}{3} t^{\frac{2}{3}-1}$

$$
=\frac{2}{3} t^{-\frac{1}{3}}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d t} \times \frac{d t}{d x} \\
\frac{d y}{d x} & =\frac{2}{3} t^{-\frac{1}{3}} \times 2 \\
& =\frac{4}{3} t^{-\frac{1}{3}} \\
& =\frac{4}{3 t^{\frac{1}{3}}} \\
& =\frac{4}{3 \sqrt[3]{t}}
\end{aligned}
$$

(Chain rule)

Re-substituting for t we get,

$$
\frac{d y}{d x}=\frac{4}{3 \sqrt[3]{2 x+3}}
$$

6. (a) Integrate $3 \cos x+2 \sin x$.

SOLUTION:

Required to find: $\int(3 \cos x+2 \sin x) d x$

Solution:

$$
\begin{aligned}
\int(3 \cos x+2 \sin x) d x & =3 \int \cos x d x+2 \int \sin x d x \\
& =3(\sin x)+2(-\cos x)+C, \text { where } C \text { is a constant } \\
& =3 \sin x-2 \cos x+C
\end{aligned}
$$

(b) Evaluate $\int_{1}^{4} \frac{2 \sqrt{x}}{x} d x$.

SOLUTION:

Required to evaluate: $\int_{1}^{4} \frac{2 \sqrt{x}}{x} d x$

Solution:

$$
\begin{aligned}
\int_{1}^{4} \frac{2 \sqrt{x}}{x} d x & =\int_{1}^{4} 2 x^{\frac{1}{2}-1} d x \\
& =\int_{1}^{4} 2 x^{-\frac{1}{2}} d x \\
& =\left[\frac{2 x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+C\right]_{1}^{4}, \text { where } C \text { is a constant } \\
& =\left[\frac{2 x^{\frac{1}{2}}}{\frac{1}{2}}+C\right]_{1}^{4} \\
& =[4 \sqrt{x}+C]_{1}^{4} \\
& =(4 \sqrt{4})-(4 \sqrt{1}) \\
& =8-4 \\
& =4
\end{aligned}
$$

(c) The point $(2,4)$ lies on the curve whose gradient is given by $\frac{d y}{d x}=-2 x+1$.

Determine:
(i) the equation of the curve

SOLUTION:

Data: $(2,4)$ is a point on the curve such that $\frac{d y}{d x}=-2 x+1$.
Required to find: The equation of the curve

Solution:

The equation of the curve is

$$
y=\int(-2 x+1) d x
$$

$$
y=-\frac{2 x^{2}}{2}+x+C, \text { where } C \text { is a constant }
$$

$$
y=-x^{2}+x+C
$$

$(2,4)$ lies on the curve
So $4=-(2)^{2}+2+C$

$$
C=6
$$

\therefore The equation of the curve is $y=-x^{2}+x+6$.
(ii) the area under the curve in the finite region in the first quadrant between 0 and 3 on the x-axis.

SOLUTION:

Required to find: The area under the curve in the first quadrant between $x=0$ and $x=3$.

Solution:

The area bounded by the curve in the first quadrant between $x=0$ and $x=3$ and the x-axis is

$$
\begin{aligned}
\int_{0}^{3}\left(-x^{2}+x+6\right) d x & =\left[-\frac{x^{3}}{3}+\frac{x^{2}}{2}+6 x+C\right]_{0}^{3}, \text { where } C \text { is a constant } \\
& =\left[-\frac{(3)^{3}}{3}+\frac{(3)^{2}}{2}+6(3)\right]-\left[-\frac{(0)^{3}}{3}+\frac{(0)^{2}}{2}+6(0)\right] \\
& =-9+4 \frac{1}{2}+18 \\
& =22 \frac{1}{2}-9 \\
& =13 \frac{1}{2} \text { square units }
\end{aligned}
$$

SECTION IV

Answer only ONE question.

ALL working must be clearly shown.
7. (a) The weights, in kg , of students in a Grade 5 class are displayed in the following stem and leaf diagram

(i) State the number of students in the class.

SOLUTION:

Data: Stem and leaf diagram showing the weights, in kg , of students in a Grade 5 class.
Required to state: The number of students in a class

Solution:

The number of boys $=15$
The number of girls $=14$
Total number of students $=15+14=29$
(ii) Construct ONE box-and-whisker plot for the entire Grade 5 class (boys and girls combined).

SOLUTION:

Required to construct: A box-and-whisker plot for the entire Grade 5 class

Solution:

Merging the data for the 29 students in the class

	Boys and Girls										
2	8	8	88	89		9					
3		2	3	3		5	7	8	8	89	9
4		0	0	01			1	1	1	12	5
5											

To construct the box-and-whisker plot, we need five statistical indices.
The lowest score $=28$
The highest score $=51$
The Median $=15^{\text {th }}$ value $=39\left(Q_{2}\right)$
The lower median, Q_{1} is the mean of the $7^{\text {th }}$ and $8^{\text {th }}$ values,

$$
Q_{1}=\frac{32+33}{2}=32.5
$$

The upper median, Q_{3} is the mean of the $22^{\text {nd }}$ and $23^{\text {rd }}$ values,

$$
Q_{3}=\frac{41+41}{2}=41
$$

The box-and-whisker plot for the entire Grade 5 class is shown below.

(iii) The standard deviation of the weights of the boys is 5.53 kg .

Determine the standard deviation of the weights of the girls. Provide an interpretation of your answer for the girls compared to that given for the boys.

SOLUTION:

Data: The standard deviation of the boys' weights is 5.53 kg
Required to determine: The standard deviation of the weights of the girls and a comparison of the boys' and girls' standard deviations

Solution:

The weights of the girls, in kg , are $28,28,29,32,33,35,38,38,38,40$, 41, 41, 42.
Standard deviation $=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}$, where $x=$ values, $\bar{x}=$ mean and $n=$ number of values.

$$
\begin{aligned}
\bar{x} & =\frac{28+28+29+32+32+33+35+38+38+38+40+41+41+42}{14} \\
& =\frac{495}{14} \\
& =35.36
\end{aligned}
$$

We now calculate the deviation of each score from the mean, $x_{i}-\overline{\bar{x}}$. Then we square these deviations and calculate the sum.

x_{i}	$x_{i}-\overline{\bar{x}}$	$\left(x_{i}-\overline{\bar{x}}\right)^{2}$
28	-7.36	54.17
28	-7.36	54.17
29	-6.36	40.45
32	-3.36	11.29
32	-3.36	11.29
33	-2.36	5.57
35	-0.36	0.13
38	2.64	6.97
38	2.64	6.97
38	2.64	6.97
40	4.64	21.53
41	5.64	31.81
41	5.64	31.81
42	6.64	44.09
		327.22

$$
\begin{aligned}
& \sum(x-\bar{x})^{2}=327.22 \\
& \begin{aligned}
\frac{\sum(x-\bar{x})^{2}}{n} & =\frac{327.22}{14} \\
& =23.37
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\text { Standard deviation } & =\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}} \\
& =\sqrt{23.37} \\
& =4.83
\end{aligned}
$$

The standard deviation of the weights of the girls (4.83) is less than that of the boys (5.53).

This means that the data showing the weights of the girls has a less spread or is of a lesser variability than that for the boys. In the case of the girls, their weights are more clustered around the mean.
(iv) Determine the number of students above the $20^{\text {th }}$ percentile for this class.

SOLUTION:

Required to determine: The number of students above the $20^{\text {th }}$ percentile of the class

Solution:

There are 15 boys and 14 girls, which is a total of 29 students in the class.
Finding the $20^{\text {th }}$ percentile: $\frac{20}{100} \times 29=5.8$
We take the nearest whole number which is 6 and called the index
The data set written from the smallest to largest will be $28,28,28,29,29,32,32,33, \ldots$

$$
\begin{gathered}
\uparrow \\
6^{\text {th }} \text { value }
\end{gathered}
$$

The number of students whose score is more than 32 will be 22 since 7 have scores of 32 or less.
(b) A vendor has 15 apples on a tray: 5 red, 6 green and 4 yellow. A customer requests 3 apples but does NOT specify a colour.

Determine the probability that the apples chosen
(i) contain one of EACH colour

SOLUTION:

Data: A vendor has 5 red, 6 green and 4 yellow apples on a tray. A customer requests 3 apples without specifying the colours.
Required to find: The probability that the customer gets one of each colour of apple

Solution:

There are 6 possible ways that this can happen. The customer can get RGY or RYG or GRY or GYR or YRG or YGR
$\mathrm{P}(\mathrm{RGY})=\mathrm{P}(R$ and G and $Y)=\frac{5}{15} \times \frac{6}{14} \times \frac{4}{13}=\frac{4}{91}$
$\mathrm{P}(\mathrm{RYG})=\mathrm{P}(R$ and Y and $G)=\frac{5}{15} \times \frac{4}{14} \times \frac{6}{13}=\frac{4}{91}$
$\mathrm{P}(\operatorname{GRY})=\mathrm{P}(G$ and R and $Y)=\frac{6}{15} \times \frac{5}{14} \times \frac{4}{13}=\frac{4}{91}$
$\mathrm{P}(\mathrm{GYR})=\mathrm{P}(G$ and Y and $R)=\frac{6}{15} \times \frac{4}{14} \times \frac{5}{13}=\frac{4}{91}$
$\mathrm{P}(\mathrm{YRG})=\mathrm{P}(Y$ and R and $G)=\frac{4}{15} \times \frac{5}{14} \times \frac{4}{13}=\frac{4}{91}$
$\mathrm{P}(\mathrm{YGR})=\mathrm{P}(Y$ and G and $R)=\frac{4}{15} \times \frac{6}{14} \times \frac{5}{13}=\frac{4}{91}$
$\mathrm{P}\left(\right.$ Customer gets one of each colour) $\frac{4}{91} \times 6=\frac{24}{91}$
(ii) are ALL of the same colour.

SOLUTION:

Required to find: The probability that the customer gets all three apples of the same colour

Solution:

P (3 apples drawn at random are the same colour)
$=\mathrm{P}(R R R)$ or $\mathrm{P}(G G G)$ or $\mathrm{P}(Y Y Y)$

$$
\begin{aligned}
& =\left(\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13}\right)+\left(\frac{6}{15} \times \frac{5}{14} \times \frac{4}{13}\right)+\left(\frac{4}{15} \times \frac{3}{14} \times \frac{2}{13}\right) \\
& =\frac{60+120+24}{15 \times 14 \times 13} \\
& =\frac{204}{15 \times 14 \times 13} \\
& =\frac{34}{455}
\end{aligned}
$$

The probability tree diagram illustrates all possible outcomes for these events.

Total Probability $=\frac{204+600+810+396+720}{2730}=\frac{2730}{2730}=1$
8. (a) A car has stopped at a traffic light. When the light turns green, it accelerates uniformly, to a speed of $28 \mathrm{~ms}^{-1}$ in 15 seconds. The car continues to travel at this speed for another 35 seconds, before it has to stop 10 seconds later at another traffic light.
(i) On the grid provided, draw a speed-time graph showing the information above.

SOLUTION:

Data: A car has stopped at a traffic light. When the light turns green, it accelerates uniformly, to a speed of $28 \mathrm{~ms}^{-1}$ in 15 seconds. The car continues to travel at this speed for another 35 seconds, before it has to stop 10 seconds later at another traffic light.
Required to draw: A speed-time graph to show the motion of the car Solution:
Phase 1:

Phase 2:

The horizontal branch (gradient of 0) indicates there is no acceleration and hence constant velocity.

Phase 3:

(ii) Calculate the distance the car travelled between the two traffic lights.

SOLUTION:

Required to calculate: The distance travelled by the car between the two traffic lights

Calculation:

Distance travelled $=\frac{1}{2}(60+35) \times 28$

$$
=1330 \mathrm{~m}
$$

(iii) Calculate the average speed of the car over this journey, giving your answer in $\mathbf{k m h}^{\mathbf{- 1}}$.

SOLUTION:

Required to calculate: The average speed of the journey in kmh^{-1} Calculation:

$$
\begin{aligned}
\text { Average speed } & =\frac{\text { Total distance covered }}{\text { Total time taken }} \\
& =\frac{\frac{1330}{1000} \mathrm{~km}}{\frac{60}{3600} \mathrm{~h}} \\
& =\frac{1.33}{\frac{1}{60}} \\
& =79.8 \mathrm{kmh}^{-1}
\end{aligned}
$$

(b) A particle moves in a straight line such that t seconds after passing a fixed point, O, its acceleration, a, in ms^{-2}, is given by $a=12 t-17$. Given that its speed at O is $10 \mathrm{~ms}^{-1}$, determine
(i) the values of t for which the particle is stationary

SOLUTION:

Data: A particle moving in a straight line passes a fixed point, O, after t second with acceleration, $a=12 t-17$. Its speed at O is $10 \mathrm{~ms}^{-1}$.
Required to determine: the values of t for which the particle is stationary Solution:
Let the velocity at t be v.

$$
\begin{aligned}
& \quad v=\int(12 t-17) d t \\
& v=\frac{12 t^{2}}{2}-17 t+C, \text { where } C \text { is a constant } \\
& v=10 \text { where } t=0 \\
& \therefore 10=6(0)^{2}-17(0)+C \\
& C=10
\end{aligned}
$$

Hence, $v=6 t^{2}-17 t+10$
At a stationary point, $v=0$
Let $6 t^{2}-17 t+10=0$

$$
\begin{aligned}
& (6 t-5)(t-2)=0 \\
& \therefore t=\frac{5}{6} \text { or } 2
\end{aligned}
$$

\therefore the particle is stationarywhen $t=\frac{5}{6}$ seconds or 2 seconds
(ii) the distance the particle travels in the fourth second.

SOLUTION:

Required to calculate: The distance the particle travelled in the $4^{\text {th }}$ second

Calculation:

Let the distance from O at time t be s.

$$
\begin{aligned}
& s=\int v d t \\
& s=\int\left(6 t^{2}-17 t+10\right) d t \\
& s=\frac{6 t^{3}}{3}-\frac{17 t^{2}}{2}+10 t+K, \text { where } K \text { is a constant } \\
& s=0 \text { when } t=0
\end{aligned}
$$

$$
0=2(0)^{3}-\frac{17}{2}(0)^{2}+10(0)+K
$$

$$
K=0
$$

So, $s=2 t^{3}-\frac{17}{2} t^{2}+10 t$

When $t=3 \quad s=2(3)^{3}-\frac{17(3)^{2}}{2}+10(3)$

$$
=54-\frac{17(9)}{2}+30
$$

$$
=7.5
$$

When $t=4$

$$
\begin{aligned}
s & =2(4)^{3}-\frac{17(4)^{2}}{2}+10(4) \\
& =128-(17 \times 8)+40 \\
& =32
\end{aligned}
$$

So, the distance travelled in the $4^{\text {th }}$ second $=32-7.5$

$$
=24.5 \mathrm{~m}
$$

