CSEC ADD MATHS 2017

SECTION I

Answer BOTH questions.

ALL working must be clearly shown.

1. (a) The function f is defined by

$$
f(x)=\frac{2 x+p}{x-1}, x \neq 1 \text { and } p \text { is a constant. }
$$

(i) Determine the inverse of $f(x)$.

SOLUTION:

Data: $f(x)=\frac{2 x+p}{x-1}, x \neq 1$
Required to find: $f^{-1}(x)$

Solution:

Let $y=f(x)$

$$
\begin{aligned}
y & =\frac{2 x+p}{x-1} \\
y(x-1) & =1(2 x+p) \\
x y-y & =2 x+p \\
x y-2 x & =y+p \\
x(y-2) & =y+p \\
x & =\frac{y+p}{y-2}
\end{aligned}
$$

Replace x by y :

$$
\begin{aligned}
y & =\frac{x+p}{x-2} \\
f^{-1}(x) & =\frac{x+p}{x-2}, x \neq 2
\end{aligned}
$$

(ii) If $f^{-1}(8)=5$, find the value of p.

SOLUTION:

Data: $f^{-1}(8)=5$
Required to find: p

Solution:

$$
\begin{aligned}
& \text { If } \left.\begin{array}{rl}
f^{-1}(8) & =5 \\
\text { Then, } \begin{array}{rl}
\frac{8+p}{8-2} & =5 \\
\frac{8+p}{6} & =5 \\
8+p & =30 \\
p & =30-8 \\
& =22
\end{array}
\end{array} \text {. } \begin{array}{rl}
\end{array}\right)
\end{aligned}
$$

(b) Given that the remainder when $f(x)=x^{3}-x^{2}-a x+b$ is divided by $x+1$ is 6 , and that $x-2$ is factor, determine the values of a and b.

SOLUTION:

Data: $f(x)=x^{3}-x^{2}-a x+b$ when divided by $x+1$ gives a remainder of 6 and $x-2$ is factor of $f(x)$.
Required to find: The value of a and of b
Solution:
Recall: If $f(x)$ is a polynomial and $f(x)$ is divided by $(x-a)$, the remainder is $f(a)$. If $f(a)=0$, then $(x-a)$ is factor of $f(x)$.
Hence, $f(-1)=6$ and $f(2)=0$

When $f(-1)=6$

$$
\begin{aligned}
(-1)^{3}-(-1)^{2}-a(-1)+b & =6 \\
-1-1+a+b & =6 \\
a+b & =8 \quad \ldots \text { (}
\end{aligned}
$$

When $f(2)=0$

$$
\begin{aligned}
(2)^{3}-(2)^{2}-a(2)+b & =0 \\
8-4-2 a+b & =0 \\
-2 a+b & =-4
\end{aligned}
$$

$$
2 a-b=4 \quad \ldots 2
$$

Equation 1 + Equation (2):

$$
\begin{array}{r}
a+b=8 \\
2 a-b=4 \\
\hline 3 a \quad=12 \\
\hline a=4
\end{array}
$$

Substitute $a=4$ into equation (1):

$$
\begin{aligned}
4+b & =8 \\
b & =4
\end{aligned}
$$

$\therefore a=4$ and $b=4$.
(c) The values of the variables P and x in Table 1 obtained from an experiment are thought to obey a law of the form $P=A x^{-k}$.

TABLE 1

x	1.58	2.51	3.98	6.30	10.0
P	121.5	110.6	106.2	99.1	93.8

(i) Use logarithms to reduce the equation to linear form.

SOLUTION:

Data: Table showing the values of variables P and x related by the equation $P=A x^{-k}$.
Required To Reduce: $P=A x^{-k}$ to linear form Solution:
$P=A x^{-k}$
Take lg:
$\lg P=\lg \left(A x^{-k}\right)$
$\lg P=\lg A+\lg x^{-k}$
$\lg P=\lg A-k \lg x$
$\lg P=-k \lg x+\lg A$ which is of the form $Y=m X+C$, where $Y=\lg P(\mathrm{a}$ variable), $m=-k$ (a constant), $X=\lg x$ (a variable) and $C=\lg A$ (a constant).
(ii) Using a suitable scale, plot the best fit line of the equation in (c) (i) on the graph paper provided. Use the space below to show your working.

SOLUTION:
Required to plot: The best fit line of the equation in (c) (i) Solution:
If $\lg P$ vs $\lg x$ is drawn, a straight line would be obtained with a gradient of $-k$ and intercept on the vertical axis of $\lg A$.

Fas.anss
Maths

$\lg x$	0.20	0.40	0.60	0.80	1.00
$\lg P$	2.085	2.043	2.026	1.996	1.972

We plot these points on the graph page provided.

(iii) Hence, estimate the constants A and k.

SOLUTION:

Required To Estimate: A and k Solution:

$$
\begin{aligned}
\text { Gradient } & =\frac{2.106-1.95}{0-1.14} \\
& =\frac{0.156}{-1.14} \\
& =-0.1368 \\
\therefore-k & =-0.1368 \\
k & =0.1368 \\
k & =0.14 \text { (correct to } 2 \text { decimal places) }
\end{aligned}
$$

The intercept on the vertical axis is 2.106 .
Hence, $\lg A=2.106$

$$
\begin{aligned}
A & =\operatorname{antilog}(2.106) \\
& =127.64 \underline{\underline{3}} \\
& =127.64 \text { (correct to } 2 \text { decimal places) }
\end{aligned}
$$

2. (a) The quadratic equation $2 x^{2}+6 x+7=0$ has roots α and β.

Calculate the value of $\frac{1}{\alpha}+\frac{1}{\beta}$.

SOLUTION:

Data: α and β are the roots of $2 x^{2}+6 x+7=0$.
Required to calculate: $\frac{1}{\alpha}+\frac{1}{\beta}$

Calculation:

If $a x^{2}+b x+c=0$
$\div a$
$x^{2}+\frac{b}{a} x+\frac{c}{a}=0$

If the roots are α and β then

$$
\begin{aligned}
(x-\alpha)(x-\beta) & =0 \\
x^{2}-(\alpha+\beta) x+\alpha \beta & =0
\end{aligned}
$$

Equating coefficients:

$$
\begin{aligned}
(\alpha+\beta) & =-\frac{b}{a} \\
\alpha \beta & =\frac{c}{a}
\end{aligned}
$$

Hence, if α and β are the roots of $2 x^{2}+6 x+7=0$, then

$$
\begin{aligned}
\alpha+\beta & =\frac{-(6)}{2} \\
& =-3
\end{aligned}
$$

and

$$
\begin{aligned}
& \alpha \beta=\frac{7}{2} \\
& \begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta} \\
\begin{aligned}
\frac{\beta+\alpha}{\alpha \beta} & =\frac{\alpha+\beta}{\alpha \beta} \\
& =\frac{-3}{\frac{7}{2}} \\
& =-\frac{6}{7}
\end{aligned}
\end{aligned} .=\begin{array}{l}
\end{array} \\
&
\end{aligned}
$$

(b) Determine the range of values of x for which, $\frac{2 x+3}{x+1} \geq 0$.

SOLUTION:

Required to find: The range of values of x for which $\frac{2 x+3}{x+1} \geq 0$.

Solution:

$$
\begin{aligned}
& \frac{2 x+3}{x+1} \geq 0 \\
& \times(x+1)^{2} \\
&(2 x+3)(x+1) \geq 0
\end{aligned}
$$

Let $y=(2 x+3)(x+1)$
If we let $y=0$ we see that the curve cuts the $x-$ axis at $-\frac{3}{2}$ and at -1 .
The coefficient of $x^{2}>0$ in the quadratic, therefore the curve is a parabola and
has a minimum point.

Hence, $\frac{2 x+3}{x+1} \geq 0$ for $\{x: x \geq-1\} \cup\left\{x: x \leq-\frac{3}{2}\right\}$
Alternatively,

Test a point in a region, say $x=0$ in C.
$(2(0)+3)(0+1) \geq 0$

$$
3 \geq 0 \text { (True) }
$$

Therefore, solutions are Region C, not B and Region A.
That is, $\{x: x \geq-1\} \cup\left\{x: x \leq-\frac{3}{2}\right\}$
(c) An accountant is offered a five-year contract with an annual increase. The accountant earned a salary of $\$ 53982.80$ and $\$ 60598.89$ in the third and fifth years respectively. If the increase follows a geometric series, calculate
(i) the amount paid in the first year

SOLUTION:

Data: An accountant is paid \$53 982.80 in the third year and $\$ 60598.89$ in the fifth year of five year contract. The salary increase follows a geometric series.

Required to calculate: The amount the account earned in the first year

Calculation:

Let the $1^{\text {st }}$ term of a G.P. $=a$, number of terms $=n$ and the common ratio $=r$

$$
T_{n}=n^{\text {th }} \text { term }
$$

$$
=a r^{n-1}
$$

Hence,

$$
\begin{aligned}
T_{3} & =a r^{3-1} \\
a r^{2} & =53982.80
\end{aligned}
$$

And,

$$
\begin{aligned}
T_{5} & =a r^{5-1} \\
a r^{4} & =60598.89
\end{aligned}
$$

$$
\frac{T_{5}}{T_{3}}=\frac{a r^{4}}{a r^{2}}
$$

$$
r^{2}=\frac{60598.89}{53982.80}
$$

Recall: $a r^{2}=53982.80$
So,

$$
\begin{aligned}
a & =\frac{53982.80}{r^{2}} \\
& =\frac{53982.80}{\frac{60598.89}{53982.80}} \\
& =48089.04
\end{aligned}
$$

Therefore, the amount paid in the first year is \$48 089.04
(ii) the TOTAL salary earned at the end of the contract.

SOLUTION:

Required to calculate: The total salary earned at the end of the five year contract

Calculation:

The amount paid at the end of the five-year contract is the sum of the first 5 terms of the G.P.

$$
\begin{aligned}
r & =\sqrt{\frac{60598.89}{53982.80}} \\
& =1.06 \text { (correct to } 2 \text { decimal places })
\end{aligned}
$$

$$
\begin{aligned}
S_{n} & =\frac{a\left(r^{n}-1\right)}{r-1},|r|>1 \\
S_{5} & =\frac{48089.04\left(1.06^{5}-1\right)}{1.06-1} \\
& =\frac{48089.04(1.33823-1)}{0.06} \\
& =\$ 271085.93
\end{aligned}
$$

SECTION II

Answer BOTH questions.

ALL working must be clearly shown.

3. (a) A circle C has an equation $x^{2}+y^{2}+4 x-2 y-20=0$.
(i) Express the equation in the form $(x+f)^{2}+(y+g)^{2}=r^{2}$.

SOLUTION:

Data: Circle C has equation $x^{2}+y^{2}+4 x-2 y-20=0$.
Required to express: The equation of C in the form of $(x+f)^{2}+(y+g)^{2}=r^{2}$

Solution:

$$
\begin{gathered}
x^{2}+y^{2}+4 x-2 y-20=0 \\
x^{2}+4 x+y^{2}-2 y-20=0 \\
(x+2)^{2}-4+(y-1)^{2}-1-20=0 \\
(x+2)^{2}+(y-1)^{2}=20+1+4 \\
(x+2)^{2}+(y-1)^{2}=(5)^{2} \text { is of the form } \\
(x+f)^{2}+(y+g)^{2}=r^{2}, \text { where } f=2, g=-1 \text { and } r=5 .
\end{gathered}
$$

(ii) State the coordinates of the center and the value of the radius of circle C.

SOLUTION:

Required to find: The coordinates of the center and the radius of C Solution:
The equation of the circle is $(x+2)^{2}+(y-1)^{2}=(5)^{2}$.

Recall: If the equation of a circle is of the form $(x+a)^{2}+(y+b)^{2}=r^{2}$, then the center is (a, b) and the radius is r.

\therefore The centre of the circle is $(-(2), 1)=(-2,1)$ and the radius is $\sqrt{(5)^{2}}=5$ units.
(iii) Determine the points of intersection of circle C and the equation $y=4-x$.

SOLUTION:

Required to find: The points of intersection of the circle and the line $y=4-x$.

Solution:

To determine the points of intersection of C and $y=4-x$, we solve both equations simultaneously.
Substitute $y=4-x$ into the equation of the circle.

$$
\begin{array}{r}
(x+2)^{2}+(4-x-1)^{2}-(5)^{2}=0 \\
(x+2)^{2}+(3-x)^{2}-25=0 \\
x^{2}+4 x+4+9-6 x+x^{2}-25=0 \\
2 x^{2}-2 x-12=0
\end{array}
$$

$\div 2$

$$
\begin{aligned}
x^{2}-x-6 & =0 \\
(x-3)(x+2) & =0 \\
\therefore x & =3 \text { or }-2
\end{aligned}
$$

When $x=3$

$$
\begin{aligned}
y & =4-3 \\
& =1
\end{aligned}
$$

When $x=-2$

$$
\begin{aligned}
y & =4-(-2) \\
& =6
\end{aligned}
$$

\therefore The points of intersection are $(3,1)$ and $(-2,6)$.
(b) Given that $\mathbf{p}=2 \mathbf{i}+3 \mathbf{j}$ and $\mathbf{q}=\mathbf{i}+5 \mathbf{j}$, determine
(i) the product of the vectors, \mathbf{p} and \mathbf{q} (presumably this means the dot product)

SOLUTION:

Data: $\mathbf{p}=2 \mathbf{i}+3 \mathbf{j}$ and $\mathbf{q}=\mathbf{i}+5 \mathbf{j}$
Required to find: The product of \mathbf{p} and \mathbf{q} Solution:
The product of \mathbf{p} and \mathbf{q} is $\mathbf{p . q}$

$$
\begin{aligned}
\mathbf{p . q} & =(2 \times 1)+(3 \times 5) \\
& =2+15 \\
& =17
\end{aligned}
$$

(ii) the angle between the two vectors

SOLUTION:

Required to find: The angle between vectors \mathbf{p} and \mathbf{q} Solution:
Let the angle between \mathbf{p} and \mathbf{q} be θ.

$$
\begin{aligned}
p . q & =|p||q| \cos \theta \\
17 & =\sqrt{(2)^{2}+(3)^{2}} \times \sqrt{(1)^{2}+(5)^{2}} \cos \theta \\
17 & =\sqrt{13} \sqrt{26} \cos \\
\cos \theta & =\frac{17}{\sqrt{13} \sqrt{26}} \\
\theta & =\cos ^{-1}\left(\frac{17}{\sqrt{13} \sqrt{26}}\right) \\
& =22.35^{\circ} \\
& =22.4^{\circ}\left(\text { correct to the nearest } 0.1^{\circ}\right)
\end{aligned}
$$

4. (a) Figure 1 shows a plot of land, ABCD (not drawn to scale). Section ABC is used for building and the remainder for farming. The radius $B C$ is 10 m and angle $B C D$ is a right angle.

Figure 1
(i) If the building space is $\frac{50 \pi}{3} \mathrm{~m}^{2}$, calculate the angle ACB in radians.

SOLUTION:

Data: Diagram showing a plot of land. Section ABC is used for building and has an area of $\frac{50 \pi}{3} \mathrm{~m}^{2}$. The remainder is used for farming. BC 10 m .
Required to calculate: Angle ACB in radians
Calculation:
(Presumably the region ACB is a sector)
Area of $\mathrm{ACB}=\frac{50 \pi}{3}$ (data)

Area of a sector $=\frac{1}{2} r^{2} \theta$, where r is radius and θ is the angle in radians

Hence,

$$
\begin{aligned}
\frac{1}{2}(10)^{2} \theta & =\frac{50 \pi}{3} \\
50 \theta & =\frac{50 \pi}{3} \\
\theta & =\frac{\pi}{3} \text { radians }
\end{aligned}
$$

(ii) Working in radians, calculate the area used for farming.

SOLUTION:

Required to calculate: The area of land used for farming Calculation:
Region ACD is used for farming.

$$
\begin{aligned}
\mathrm{AC} \mathrm{D} & =\frac{\pi}{2}-\frac{\pi}{3} \\
& =\frac{\pi}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{DC}}{10}=\cos \frac{\pi}{6} \\
&=\frac{\sqrt{3}}{2} \\
& \begin{aligned}
\mathrm{DC} & =\frac{10 \sqrt{3}}{2} \\
& =5 \sqrt{3}
\end{aligned}
\end{aligned}
$$

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{ACD} & =\frac{1}{2}(10)(5 \sqrt{3}) \sin \left(\frac{\pi}{6}\right) \\
& =\frac{1}{2} \times 10 \times 5 \sqrt{3} \times \frac{1}{2} \\
& =\frac{25 \sqrt{3}}{2} \mathrm{~m}^{2}(\text { in exact form })
\end{aligned}
$$

(b) Given that

$$
\begin{aligned}
& \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \\
& \cos \frac{\pi}{3}=\frac{1}{2} \text { and } \\
& \sin \frac{\pi}{4}=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

show without using a calculate that

$$
\frac{\cos \left(\frac{\pi}{4}-\frac{\pi}{3}\right)}{\sin \frac{2 \pi}{3}}=\frac{\sqrt{2}+\sqrt{6}}{2 \sqrt{3}}
$$

SOLUTION:

Data: $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}, \cos \frac{\pi}{3}=\frac{1}{2}$ and $\sin \frac{\pi}{4}=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}$
Required to show: $\frac{\cos \left(\frac{\pi}{4}-\frac{\pi}{3}\right)}{\sin \frac{2 \pi}{3}}=\frac{\sqrt{2}+\sqrt{6}}{2 \sqrt{3}}$

Proof:

Using the compound angle formula

$$
\begin{aligned}
\cos \left(\frac{\pi}{4}-\frac{\pi}{3}\right) & =\cos \frac{\pi}{4} \cos \frac{\pi}{3}+\sin \frac{\pi}{4} \cos \frac{\pi}{3} \\
& =\frac{\sqrt{2}}{2} \times \frac{1}{2}+\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} \\
& =\frac{\sqrt{2}}{4}+\frac{\sqrt{2} \sqrt{3}}{4} \\
\sin \frac{2 \pi}{3} & \equiv \sin \left(\pi-\frac{\pi}{3}\right) \\
& =\sin \pi \cos \frac{\pi}{3}-\cos \pi \sin \frac{\pi}{3} \\
& =\left(0 \times \frac{1}{2}\right)-\left(-1 \times \frac{\sqrt{3}}{2}\right) \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
\frac{\cos \left(\frac{\pi}{4}-\frac{\pi}{3}\right)}{\sin \frac{2 \pi}{3}}=\frac{\frac{\sqrt{2}+\sqrt{2} \sqrt{3}}{4}}{\frac{\sqrt{3}}{2}}
$$

$$
=\frac{\sqrt{2}+\sqrt{6}}{A_{2}} \times \frac{\not 2}{\sqrt{3}}
$$

$$
=\frac{\sqrt{2}+\sqrt{6}}{2 \sqrt{3}}
$$

Q.E.D.

(c) Prove the identity

$$
1-\frac{\cos ^{2} \theta}{1+\sin \theta}=\sin \theta
$$

SOLUTION:

Required to prove: $1-\frac{\cos ^{2} \theta}{1+\sin \theta}=\sin \theta$

Proof:

Simplify L.H.S.:
$1-\frac{\cos ^{2} \theta}{1+\sin \theta}$
Recall: $\sin ^{2} \theta+\cos ^{2} \theta=1$

$$
\cos ^{2} \theta=1-\sin ^{2} \theta
$$

This is a difference of two squares:

$$
\cos ^{2} \theta=(1-\sin \theta)(1+\sin \theta)
$$

So,

$$
\begin{aligned}
1-\frac{\cos ^{2} \theta}{1+\sin \theta} & =1-\frac{(1-\sin \theta)(1+\sin \theta)}{1+\sin \theta} \\
& =1-(1-\sin \theta) \\
& =1-1+\sin \theta \\
& =\sin \theta=R H S
\end{aligned}
$$

Q.E.D.

SECTION III

Answer BOTH questions.

ALL working must be clearly shown.

5. (a) Differentiate the expression $(1+2 x)^{3}(x+3)$ with respect to x, simplifying your answer

SOLUTION:

Required to differentiate: $(1+2 x)^{3}(x+3)$ with respect to x.

Solution:

Let $y=(1+2 x)^{3}(x+3)$
y is of the form $y=u v$, where
$u=(1+2 x)^{3}$

$$
v=x+3 \Rightarrow \frac{d v}{d x}=1
$$

Let $t=1+2 x \Rightarrow \frac{d t}{d x}=2$
So, $u=t^{3} \Rightarrow \frac{d u}{d t}=3 t^{2}$
Apply the chain rule:

$$
\begin{aligned}
\frac{d u}{d x} & =\frac{d u}{d t} \times \frac{d t}{d x} \\
& =3 t^{2} \times 2 \\
& =6 t^{2}
\end{aligned}
$$

Re: $t=1+2 x$

$$
\frac{d u}{d x}=6(1+2 x)^{2}
$$

Apply the product rule:

$$
\begin{aligned}
\frac{d y}{d x} & =v \frac{d u}{d x}+u \frac{d v}{d x} \\
& =(x+3) 6(1+2 x)^{2}+(1+2 x)^{3}(1) \\
& =(1+2 x)^{2}\{6(x+3)+(1+2 x)\} \\
& =(1+2 x)^{2}\{6 x+18+1+2 x\} \\
& =(1+2 x)^{2}(8 x+19)
\end{aligned}
$$

(b) The point $P(-2,0)$ lies on the curve $y=3 x^{3}+2 x^{2}-24 x$. Determine the equation of the normal to the curve at point P.

SOLUTION:

Data: $P(-2,0)$ lies on the curve $y=3 x^{3}+2 x^{2}-24 x$.
Required To Find: The equation of the normal to the curve at P Solution:
(As a point of interest, the point $P,(2,0)$ does NOT lie on the curve)

$$
y=3 x^{3}+2 x^{2}-24 x
$$

Gradient function, $\frac{d y}{d x}=3\left(3 x^{3-1}\right)+2\left(2 x^{2-1}\right)-24$

$$
=9 x^{2}+4 x-24
$$

The gradient of the tangent at $P=9(-2)^{2}+4(-2)-24$

$$
\begin{aligned}
& =36-8-34 \\
& =4
\end{aligned}
$$

Hence, the gradient of the normal at $P=-\frac{1}{4}$ (The products of the gradients of perpendicular lines $=-1$)

The equation of the normal at P is

$$
\begin{aligned}
\frac{y-0}{x-(-2)} & =-\frac{1}{4} \\
4(y) & =-1(x+2) \\
4 y & =-x-2
\end{aligned}
$$

$4 y+x+2=0$ or any other equivalent form.
(c) Water is poured into a cylindrical container of radius 15 cm . The height of the water increases at a rate of $2 \mathrm{cms}^{-1}$. Given that the formula for the volume of a cylinder is $\pi r^{2} h$, determine the rate of increase of the volume of water in the container in terms of π.

SOLUTION:

Data: The rate of increase of the height of water in a cylindrical container is 2 cms^{-1}. Volume of a cylinder is $\pi r^{2} h$.

Required to find: The rate of increase of the volume of water in the container

Solution:

Let the height of water be $h \mathrm{~cm}$ and time be $t \mathrm{~s}$ and V be the volume of the cylinder.
$V=\pi r^{2} h$
$V=\pi(15)^{2} h$
$V=225 \pi h$
Since the height increases at the rate of $2 \mathrm{cms}^{-1}$, then $\frac{d h}{d t}=+2 \mathrm{cms}^{-1}$
Required to calculate $\frac{d V}{d t}$
By the chain rule:

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{d V}{d h} \times \frac{d h}{d t} \\
& =225 \pi \times 2 \\
& =450 \pi \mathrm{~cm}^{3} \mathrm{~s}^{-1}(\text { Positive } \Rightarrow \text { increase in the rate of volume })
\end{aligned}
$$

6. (a) Show that $\int_{0}^{\frac{\pi}{4}}(\sin x+4 \cos x) d x=\frac{3 \sqrt{2}+2}{2}$.

SOLUTION:

Required to show: $\int_{0}^{\frac{\pi}{4}}(\sin x+4 \cos x) d x=\frac{3 \sqrt{2}+2}{2}$
Proof:
$\int(\sin x+4 \cos x) d x=-\cos x+4(\sin x)+C \quad$ where C is a constant
$\therefore \int_{0}^{\frac{\pi}{4}}(\sin x+4 \cos x) d x=[-\cos x+4 \sin x]_{0}^{\frac{\pi}{4}}$
$=\left(-\cos \frac{\pi}{4}+4 \sin \frac{\pi}{4}\right)-(-\cos (0)+4 \sin (0))$
$=-\frac{1}{\sqrt{2}}+4\left(\frac{1}{\sqrt{2}}\right)-(-(1)+4(0))$
$=\frac{3}{\sqrt{2}}-(-1)$
$=\frac{3}{\sqrt{2}}+1$
$=\frac{3}{\sqrt{2}}+\frac{1}{1}$

$$
=\frac{3+\sqrt{2}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}
$$

$$
=\frac{3 \sqrt{2}+2}{2}
$$

Q.E.D.

(b) Determine the equation of a curve whose gradient function $\frac{d y}{d x}=x+2$, and which passes through the point $P(2,3)$.

SOLUTION:

Data: Curve has gradient function $\frac{d y}{d x}=x+2$ and passes through $P(2,3)$.
Required to find: The equation of the curve Solution:
$\frac{d y}{d x}=x+2$
\therefore The equation of the curve is $y=\int(x+2) d x$

$$
y=\int(x+2) d x
$$

$y=\frac{x^{2}}{2}+2 x+C \quad$ (where C is the constant of integration)
$P(2,3)$ lies on the curve.
When $x=2, y=3$ satisfies the equation

$$
\begin{aligned}
3 & =\frac{(2)^{2}}{2}+2(2)+C \\
3 & =2+4+C \\
C & =-3
\end{aligned}
$$

\therefore The equation of the curve is $y=\frac{x^{2}}{2}+2 x-3$.
(c) Evaluate $\int_{1}^{2}(4-x)^{2} d x$.

SOLUTION:

Required to evaluate: $\int_{1}^{2}(4-x)^{2} d x$

Solution:

$$
\begin{aligned}
\int_{1}^{2}(4-x)^{2} d x & =\int_{1}^{2}\left(16-8 x+x^{2}\right) d x \\
& =\left[16 x-4 x^{2}+\frac{x^{3}}{3}\right]_{1}^{2} \\
& =\left[16(2)-4(2)^{2}+\frac{(2)^{3}}{3}\right]-\left[16(1)-4(1)^{2}+\frac{(1)^{3}}{3}\right] \\
& =\left(32-16+2 \frac{2}{3}\right)-\left(16-4+\frac{1}{3}\right) \\
& =18 \frac{2}{3}-12 \frac{1}{3} \\
& =6 \frac{1}{3} \text { units }^{2}
\end{aligned}
$$

(d) Calculate the volume of the solid formed when the area enclosed by the straight line $y=\frac{x}{2}$ and the x-axis for $x=0$ to $x=6$ is rotated through 2π about the x - axis.

SOLUTION:

Data: A solid is formed by rotating the area enclosed by the line $y=\frac{x}{2}$ and the x - axis for $x=0$ to $x=6$ through 2π about the x-axis.

Required to calculate: The volume of the solid formed

Calculation:

When $x=6$
$y=\frac{6}{2}$
$=3$

The solid generated is a cone of radius 3 units and height 6 units.

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \times \pi \times(3)^{2} \times 6 \\
& =18 \pi \text { units }^{3}
\end{aligned}
$$

Alternative Method:

$$
\begin{aligned}
V & =\pi \int_{x_{1}}^{x_{2}} y^{2} d x \\
& =\pi \int_{0}^{6}\left(\frac{x}{2}\right)^{2} d x \\
& =\pi \int_{0}^{6} \frac{x^{2}}{4} d x \\
& =\pi\left[\frac{x^{3}}{12}\right]_{0}^{6} \\
& =\pi\left\{\frac{(6)^{3}}{12}-\frac{(0)^{3}}{12}\right\} \\
& =18 \pi \text { units }^{3}
\end{aligned}
$$

SECTION IV

Answer only ONE question.

ALL working must be clearly shown.

7. (a) The probability of a final-year college student receiving a reply for an internship programme from three accounting firms, Q, R and S, is $0.55,0.25$ and 0.20 respectively. The probability that a student receives a reply from firm Q and is accepted is 0.95 . The probability that a student receives a reply from firms R and S and is accepted is 0.30 for each of them.
(i) Draw a tree diagram to illustrate the information above.

SOLUTION:

Data: The probability a student receives a reply for an internship programme from accounting firms Q, R and S are $0.55,0.25$ and 0.20 respectively. The probability that a student receives a reply from firm Q and is accepted is 0.95 . The probability that a student receives a reply from firms R and S and is accepted is 0.30 for each of them.

Required to draw: A tree diagram to illustrate the information given Solution:
Let A represent the event that a student is accepted.

(ii) Determine the probability that the student will be accepted for an internship programme.

SOLUTION:

Required to find: The probability that a student will be accepted for an internship programme

Solution:

$$
\begin{aligned}
P(A) & =P(Q \text { and } A \text { or } R \text { and } A \text { or } S \text { and } A) \\
& =P(Q \text { and } A)+P(R \text { and } A)+P(S \text { and } A) \\
& =(0.55 \times 0.95)+(0.25 \times 0.3)+(0.2 \times 0.3) \\
& =0.5225+0.075+0.06 \\
& =0.6575
\end{aligned}
$$

(b) Table 2 shows the length, in cm , of 20 spindles prepared by a carpenter to build a railing for an existing staircase.

TABLE 2

1.5	3.2	6.1	9.4	11.0	12.6	17.0	18.5	20.2	24.4
25.2	25.2	28.3	28.8	29.1	30.4	32.5	34.6	38.3	38.4

Determine
(i) the mean length

SOLUTION:

Data: Table showing the lengths, in cm , of 20 spindles prepared by a carpenter.
Required to find: The mean length
Solution:
Mean length, $\bar{x}=\frac{\sum x}{n}$, where x is the length of a spindle and n is the number of spindles.

$$
\begin{aligned}
\bar{x} & =\binom{1.5+3.2+6.1+9.4+11.0+12.6+17.0+18.5+20.2+24.4}{+25.2+25.2+28.3+28.8+29.1+30.4+32.5+34.6+38.3+38.4} \div 20 \\
& =434.7 \div 20 \\
& =21.735 \mathrm{~cm}
\end{aligned}
$$

(ii) the modal length

SOLUTION:

Required to find: The modal length

Solution:

There is only one length which occurs more than once and which is 25.2 .
Hence, the modal length is 25.2 cm .
(iii) the median length

SOLUTION:

Required to find: The median length Solution:
When arranged in ascending order of magnitude there will be two middle values as the number of measurements is an even number
$10^{\text {th }}$ length $=24.4$
$11^{\text {th }}$ length $=25.2$

$$
\begin{aligned}
\therefore \text { Median length } & =\frac{24.4+25.5}{2} \\
& =24.8 \mathrm{~cm}
\end{aligned}
$$

(iv) the interquartile range for the data

SOLUTION:
Required to find: The interquartile range for the data. Solution:

The $5^{\text {th }}$ and $6^{\text {th }}$ values are 11.0 and 12.6
Hence,
$Q_{1}=\frac{11.0+12.6}{2}=11.8$
The $15^{\text {th }}$ and $16^{\text {th }}$ values are 29.1 and 30.4
Hence,

$$
Q_{3}=\frac{29.1+30.4}{2}=29.75
$$

The interquartile range (I.Q.R.) = Upper quartile - Lower Quartile

$$
\begin{aligned}
& =Q_{3}-Q_{1} \\
& =29.75-11.8 \\
& =17.95 \mathrm{~cm}
\end{aligned}
$$

(c) A school cafeteria sells 20 chicken patties, 10 lentil patties and 25 saltfish patties daily. On a particular day, the first student ordered 2 patties but did not specify the type. The vendor randomly selects 2 patties.
(i) Calculate the probability that the first patty selected was saltfish.

SOLUTION:

Data: A school cafeteria sells 20 chicken patties, 10 lentil patties and 25 saltfish patties daily. The vendor selects two patties at random to sell to a customer on a particular day.
Required to find: The probability that the first patty was saltfish Solution:

Number of chicken patties $(C)=20$
Number of lentil patties $(L)=10$
Number of saltfish patties $(S)=\underline{25}$
55

$$
P(S)=\frac{20}{55} \quad P(L)=\frac{10}{55} \quad P(C)=\frac{20}{55}
$$

If the first patty is saltfish, the second can be either saltfish or not saltfish.

$$
P(S \text { and } S)=\frac{25}{55} \times \frac{24}{54}
$$

$$
P\left(S \text { and } S^{\prime}\right)=\frac{25}{55} \times \frac{30}{54}
$$

$$
P(S)=\left(\frac{25}{55} \times \frac{24}{54}\right)+\left(\frac{25}{55} \times \frac{30}{54}\right)=\frac{1350}{2970}=\frac{5}{11}
$$

(ii) Given that the first patty was saltfish, calculate the probability that the second patty was NOT saltfish.

SOLUTION:

Data: The first patty selected was saltfish.
Required to find: The probability that the second patty was not saltfish Solution:
If the first patty is saltfish, number of saltfish patties remaining $=25-1$

$$
=24
$$

Number of patties remaining $=55-1$

$$
=54
$$

Number of patties remaining that were not saltfish $=54-24$

$$
=30
$$

$P($ Second patty is not saltfish $)=\frac{30}{54}$
$P\left(\mathrm{~S}\right.$ and $\left.\mathrm{S}^{\prime}\right)=\frac{25}{55} \times \frac{30}{54}=\frac{25}{99}$
8. (a) The displacement, s, of a particle from a fixed point O, is given by $s=t^{3}-\frac{5}{2} t^{2}-2 t$ metres at time, t seconds.
(i) Determine the velocity of the particle at $t=3.5 \mathrm{~s}$, clearly starting the correct unit.

SOLUTION:

Data: The displacement, s, of a particle from a point O is $s=t^{3}-\frac{5}{2} t^{2}-2 t$ metres at time, t seconds.
Required to find: The velocity of the particle at $t=3.5$.
Solution:
Let the velocity at time t be $v \mathrm{~ms}^{-1}$.

$$
\begin{aligned}
v & =\frac{d s}{d t} \\
& =3 t^{3-1}-\frac{5}{2}\left(2 t^{2-1}\right)-2 \\
& =3 t^{2}-5 t-2
\end{aligned}
$$

When $t=3.5$

$$
\begin{aligned}
v & =3(3.5)^{2}-5(3.5)-2 \\
& =17.25 \mathrm{~ms}^{-1}
\end{aligned}
$$

(ii) If the particle is momentarily at rest, find the time, t, at this position.

SOLUTION:

Required to find: The time that the particle is momentarily at rest Solution:
At instantaneous rest, $v=0$.
Let $3 t^{2}-5 t-2=0$
$(3 t+1)(t-2)=0$
$t=2$ or $-\frac{1}{3}$
t cannot be negative.
So $t=2$ only at this position of momentary rest
(As a point of interest, the velocity of the vehicle is NOT zero for any value of t when t lies between 0 and 2 (exclusive) or for t greater than 2 . The particle is therefore at instantaneous rest at $t=2$ and NOT momentary rest.)
(b) A vehicle accelerates uniformly from rest for 75 m and then travels for another 120 m at its maximum speed. The vehicle later stops at a traffic light. The distance from rest to the traffic light is 240 m and the time for the journey is 15 seconds.
(i) In the space below, sketch a velocity - time graph to illustrate the motion of the vehicle.

SOLUTION:

Data: A vehicle accelerates uniformly from rest for 75 m and then travels for another 120 m at its maximum speed. It then stops at a traffic light 240 m away. The time for the journey is 15 seconds.
(As a point of interest-a vehicle cannot travel)
Required to sketch: The velocity - time graph to illustrate the journey Solution:
Let us look at the journey of the vehicle in different phases
Phase 1:

The straight line 'branch' implies uniform acceleration Let the maximum velocity reached $=v$
Let the time taken $=t_{1}$
The area under the graph $=75$
(Assuming that the maximum speed was attained after covering the 75 m distance)

Phase 2:

The horizontal branch indicates constant speed. Let the time for this phase be from t_{1} to t_{2}

Phase 3:

The straight line 'branch' is assuming uniform deceleration as the vehicles proceeds from a constant velocity to stopping at the traffic light. If the deceleration was NOT constant, the branch would be a curve.

The completed velocity - time graph looks like:

(ii) Calculate the length of time the vehicle maintains constant speed.

SOLUTION:

Required to calculate: The length of time the vehicles travels at constant speed
Calculation:
Let the regions A, B and C be as shown on the diagram.
Region A : Vehicles accelerates for a period of t, to reach a maximum speed of v.
$\therefore \frac{v t_{1}}{2}=75$
$v t_{1}=150$
Region B : Constant speed from t_{1} to t_{2} of $v \mathrm{~ms}^{-1}$.

$$
\begin{align*}
\therefore v\left(t_{2}-t_{1}\right) & =120 \\
v t_{2}-v t_{1} & =120
\end{align*}
$$

Region C : Decelerates from rest from t_{2} to 15 s , that is, for $\left(15-t_{2}\right) \mathrm{s}$.
Hence, $\frac{v \times\left(15-t_{2}\right)}{2}=45$

$$
\begin{align*}
v\left(15-t_{2}\right) & =90 \\
15 v-v t_{2} & =90
\end{align*}
$$

Substitute equation (1) into equation (2):

$$
\begin{align*}
v t_{2}-150 & =120 \\
v t_{2} & =270
\end{align*}
$$

Substitute equation 4 into equation 3 :

$$
\begin{aligned}
15 v-270 & =90 \\
15 v & =90+270 \\
& =360 \\
v & =\frac{360}{15} \\
& =24 \mathrm{~ms}^{-1}
\end{aligned}
$$

Substitute $v=24$ into equation $\mathbf{(1)}$

$$
\begin{aligned}
24 t_{1} & =150 \\
t_{1} & =\frac{150}{24} \\
& =6 \frac{1}{4} \mathrm{~s}
\end{aligned}
$$

Substitute $v=24$ into equation (3:
$24\left(15-t_{2}\right)=90$

$$
\begin{aligned}
15-t_{2} & =\frac{90}{24} \\
& =3 \frac{3}{4} \\
t_{2} & =15-3 \frac{3}{4} \\
& =11 \frac{1}{4} \mathrm{~s}
\end{aligned}
$$

\therefore The length of time that the vehicle maintains a constant speed $=t_{2}-t_{1}$
$=11 \frac{1}{4}-6 \frac{1}{4}$
$=5 \mathrm{~s}$
(iii) Calculate the maximum velocity attained.

SOLUTION:
Required to calculate: The maximum velocity attained Calculation:
Maximum velocity $=v$

$$
=24 \mathrm{~ms}^{-1} \text { (already done) }
$$

(iv) Determine the acceleration of the vehicle.

SOLUTION:

Required to find: The acceleration of the vehicle.

Solution:

Considering the 'branch' for the first phase of the journey.

$$
\begin{aligned}
\text { Gradient } & =\frac{24-0}{6 \frac{1}{4}-0} \\
& =\frac{24}{\frac{25}{4}} \\
& =\frac{96}{25} \\
& =3 \frac{21}{25} \mathrm{~ms}^{-2}
\end{aligned}
$$

Alternative Method:

$v=u+a t$ for constant acceleration

FAS-PASS Maths

When $u=0, v=24$ and $t=6 \frac{1}{4}$
$24=0+6 \frac{1}{4}$
$t=\frac{24}{6 \frac{1}{4}}$
$=3 \frac{21}{25} \mathrm{~ms}^{-2}$

