1. (a) Data: $f(x)=x^{2}+5, x \geq 1$ and $g(x)=4 x-3, x \in R$.

Required to Calculate: $g f(2)$

Calculation:

$$
\begin{aligned}
& f(2)=(2)^{2}+5 \\
& =9
\end{aligned} \begin{aligned}
\therefore g f(2) & =g(9) \\
& =4(9)-3 \\
& =33
\end{aligned}
$$

OR

$$
\begin{aligned}
g f(x) & =4\left(x^{2}+5\right)-3 \\
\therefore g f(2) & =4\left((2)^{2}+5\right)-3 \\
& =33
\end{aligned}
$$

(Note: The given domain for $f(x)$ and $g(x)$ are of no consequence in the question).
(b) Data: $h(x)=\frac{3 x+5}{x-2}, x \in R, x \neq 2$.

Required to Calculate: $h^{-1}(x)$

Calculation:

$$
\begin{aligned}
\text { Let } y & =\frac{3 x+5}{x-2} \\
x y-2 y & =3 x+5 \\
x y-3 x & =5+2 y \\
x(y-3) & =2 y+5 \\
x & =\frac{2 y+5}{y-3}
\end{aligned}
$$

Replace y by x to obtain:
$h^{-1}(x)=\frac{2 x+5}{x-3}, x \neq 3$
(c) Data: $(x-2)$ is a factor of $k(x)=2 x^{3}-5 x^{2}+x+2$.

Required to Factorise: $k(x)$ completely.
Solution:
If $(x-2)$ is a factor of $k(x)=2 x^{3}-5 x^{2}+x+2$, then $k(x)$ is divisible by $(x-2)$

$$
\begin{array}{r}
2 x^{2}-x-1 \\
x - 2 \longdiv { 2 x ^ { 3 } - 5 x ^ { 2 } + x + 2 } \\
-\frac{2 x^{3}-4 x^{2}}{-x^{2}+x+2} \\
-\frac{-x^{2}+2 x}{-x+2} \\
-\frac{-x+2}{0}
\end{array}
$$

We factorise $2 x^{2}-x-1=(2 x+1)(x-1)$
Hence, $k(x)=(x-2)(2 x+1)(x-1)$
(d)
(i) Data: $16^{x+2}=\frac{1}{4}$

Required to Calculate: x
Calculation:

$$
\begin{aligned}
16^{x+2} & =\frac{1}{4} \\
\left(2^{4}\right)^{x+2} & =\frac{1}{(2)^{2}} \\
2^{4 x+8} & =2^{-2}
\end{aligned}
$$

Equating indices since the bases are equal, we obtain

$$
\begin{aligned}
4 x+8 & =-2 \\
\therefore 4 x & =-10 \\
x & =-2 \frac{1}{2}
\end{aligned}
$$

(ii) Data: $\log _{3}(x+2)+\log _{3}(x-1)=\log _{3}(6 x-8)$

Required to Calculate: x
Calculation:

$$
\begin{aligned}
\log _{3}(x+2)+\log _{3}(x-1) & =\log _{3}(6 x-8) \\
\therefore \log _{3}\{(x+2)(x-1)\} & =\log _{3}(6 x-8)
\end{aligned} \text { (Product law) }
$$

Remove $\log _{3}$, we obtain
$(x+2)(x-1)=6 x-8$

$$
x^{2}+x-2=6 x-8
$$

$$
x^{2}-5 x+6=0
$$

$(x-2)(x-3)=0$
Hence, $x=2$ or 3

When $x=2$, there are no terms of the equation that result in $\log _{3}(-\mathrm{ve})$ or $\log _{3}(0)$.
When $x=3$ there are no terms of the equation that result in $\log _{3}(-\mathrm{ve})$ or $\log _{3}(0)$.
Hence, $x=2$ or 3 .
2. (a) Data: $f(x)=3 x^{2}-9 x+4$
(i) Required to Express: $f(x)$ in the form $a(x+b)^{2}+c$, where a, b and $c \in R$.

Solution:

$$
\begin{aligned}
a(x+b)^{2}+c & =a(x+b)(x+b)+c \\
& =a\left(x^{2}+2 b x+b^{2}\right)+c \\
& =2 a x^{2}+2 a b x+a b^{2}+c
\end{aligned}
$$

Hence,
$3 x^{2}-9 x+4=a x^{2}+2 a b x+a b^{2}+c$
Equating coefficients:

$$
a=3
$$

$$
\begin{aligned}
2 a b & =-9 \\
\therefore 2(3) b & =-9 \\
b & =-1 \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
a b^{2}+c & =4 \\
\therefore 3\left(-1 \frac{1}{2}\right)^{2}+c & =4 \\
\frac{27}{4}+c & =4 \\
c & =4-\frac{27}{4} \\
& =4-6 \frac{3}{4} \\
& =-2 \frac{3}{4}
\end{aligned}
$$

$\therefore f(x)=3 x^{2}-9 x+4$ can be written as $3\left(x-1 \frac{1}{2}\right)^{2}-2 \frac{3}{4}$, where $a=3 \in R, b=-1 \frac{1}{2} \in R$ and $c=-2 \frac{3}{4} \in R$.

OR

$$
3 x^{2}-9 x+4=3\left(x^{2}-3 x\right)+4
$$

One half the coefficient of x is $\frac{1}{2}(-3)=-1 \frac{1}{2}$

$$
\begin{aligned}
& \therefore 3\left(x^{2}-3 x\right)+4 \\
& =3\left(x-1 \frac{1}{2}\right)^{2}+* \\
& \\
& 3\left(x-1 \frac{1}{2}\right)\left(x-1 \frac{1}{2}\right) \\
& =3\left(x^{2}-3 x+\frac{9}{4}\right) \\
& =3 x^{2}-9 x+6 \frac{3}{4} \\
& 6 \frac{3}{4}-2 \frac{3}{4}=4 \\
& \therefore *=-2 \frac{3}{4}
\end{aligned}
$$

If $3 x^{2}-9 x+4=3\left(x-1 \frac{1}{2}\right)^{2}-2 \frac{3}{4}$ and which is of the form $a(x+b)^{2}+c$, where $a=3 \in R, b=-1 \frac{1}{2} \in R$ and $c=-2 \frac{3}{4} \in R$.
(ii) Required to State: The minimum point of $f(x)$.

Solution:

$$
\begin{aligned}
& f(x)=3 x^{2}-9 x+4 \equiv 3\left(x-1 \frac{1}{2}\right)^{2}-2 \frac{3}{4} \\
& \quad\left(x-1 \frac{1}{2}\right)^{2} \geq 0 \forall x \\
& \therefore 3\left(x-1 \frac{1}{2}\right)^{2} \geq 0 \quad \forall x
\end{aligned}
$$

Hence, if the graph of $f(x)$ is drawn, the minimum value of $f(x)$ is $0-2 \frac{3}{4}=-2 \frac{3}{4}$. The minimum value occurs when $3\left(x-1 \frac{1}{2}\right)^{2}=0$ that is when $x=1 \frac{1}{2}$. Therefore, the minimum point on the curve of $f(x)$ is $\left(1 \frac{1}{2},-2 \frac{3}{4}\right)$.
(b) Data: The equation $3 x^{2}-6 x-4=0$ has roots α and β.

Required to Calculate: The value of $\frac{1}{\alpha}+\frac{1}{\beta}$.

Calculation:

Recall: If $a x^{2}+b x+c=0$

$$
\begin{aligned}
& \div a \\
& x^{2}+\frac{b}{a} x+\frac{c}{a}=0
\end{aligned}
$$

If the roots are α and β, then $(x-\alpha)(x-\beta)=0$.
$\therefore x^{2}-(\alpha+\beta) x+\alpha \beta=0$
Equating coefficients, we get:
$\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$
So, in the expression $3 x^{2}-6 x-4=0$

$$
\begin{aligned}
& \alpha+\beta=\frac{-(-6)}{3} \\
&=2 \\
& \alpha \beta=-\frac{4}{3} \\
& \frac{1}{\alpha}+\frac{1}{\beta} \\
& \frac{\beta+\alpha}{\alpha \beta}=\frac{\alpha+\beta}{\alpha \beta} \\
&=\frac{2}{-\frac{4}{3}} \\
&=-1 \frac{1}{2}
\end{aligned}
$$

So, $\frac{1}{\alpha}+\frac{1}{\beta}=-1 \frac{1}{2}$.
(c) Data: Equation of the curve is $2 x^{2}-y+19=0$ and the equation of the line is $y+11 x=4$.
Required to Find: The points of intersection of the line and curve.
Solution:
To determine the points of intersection we solve the two equations simultaneously.

$$
\begin{equation*}
\text { Let } y+11 x=4 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
2 x^{2}-y+19=0 \tag{2}
\end{equation*}
$$

Equation (1) + Equation (2)

$$
\begin{aligned}
y+11 x-4+2 x^{2}-y+19 & =0 \\
2 x^{2}+11 x+15 & =0 \\
(2 x+5)(x+3) & =0 \\
x & =-\frac{5}{2} \text { or }-3
\end{aligned}
$$

Substitute $x=-\frac{5}{2}$ in equation (1)

$$
\begin{aligned}
y+11\left(-\frac{5}{2}\right)-4 & =0 \\
y & =4+\frac{55}{2} \\
y & =31 \frac{1}{2}
\end{aligned}
$$

Substitute $x=-3$ in equation (1)

$$
\begin{aligned}
y+11(-3)-4 & =0 \\
y & =37
\end{aligned}
$$

\therefore The points of intersection are $\left(-2 \frac{1}{2}, 31 \frac{1}{2}\right)$ and $(-3,37)$.
(d) Data: Starting salary of employee $\$ 36000$ and which increases $\$ 2400$ per annum.
Required to Calculate: The salary of the employee in the $9^{\text {th }}$ year.

Calculation:

Year	Salary
1	36000
2	$\begin{aligned} & 36000+2400 \\ = & 36000+(2-1) 2400 \end{aligned}$
3	$\begin{aligned} & 36000+2400+2400 \\ & =36000+(3-1) 2400 \\ & \hline \end{aligned}$
4	$\begin{aligned} & 36000+2(2400)+2400 \\ = & 36000+(4-1) 2400 \end{aligned}$
,	
9	$36000+(9-1)(2400)$

The annual salary is in arithmetic progression, with the first term, $a=\$ 36000$ and the common difference, $d=\$ 2400$.

The $n^{\text {th }}$ term, $T_{n}=a+(n-1) d$, where $n=$ number of term.

$$
\begin{aligned}
T_{9} & =\$ 36000+(9-1) \$ 2400 \\
& =\$(36000+8(\$ 2400)) \\
& =\$ 55200
\end{aligned}
$$

3. (a) Data: The equation of the circle is $x^{2}+y^{2}-12 x-22 y+152=0$.
(i) Required to Determine: The coordinates of the center. Solution:

The equation of the circle $x^{2}+y^{2}-12 x-22 y+152=0$ can be written as $x^{2}+y^{2}+2(-6) x+2(-11) y+152=0$ and which is of the general form $x^{2}+y^{2}+2 g x+2 f y+c=0$.
In this case, $g=-6, f=-11$ and $c=152$.
\therefore The center of the circle is $(-(-6),-(-11))=(6,11)$.

(ii) Required to Determine: The length of the radius.

Solution:

The length of the radius $=\sqrt{(-6)^{2}+(-11)^{2}-(152)}$

$$
\begin{aligned}
& =\sqrt{36+121-152} \\
& =\sqrt{5} \text { units }
\end{aligned}
$$

(iii) Required to Determine: The equation of the normal to the circle at $(4,10)$.

Solution:

Let the center of the circle be $(6,11)$.
Let P be the point $(4,10)$.
The angle made by the tangent to a circle and the radius at the point of contact is a right angle.
Hence, the normal to the circle at P is the line (radius) $C P$.

The gradient of $C P=\frac{11-10}{6-4}$

$$
=\frac{1}{2}
$$

The equation of the normal to the circle at P is

$$
\begin{aligned}
\frac{y-10}{x-4} & =\frac{1}{2} \\
2 y-20 & =x-4 \\
2 y & =x+16 \\
y & =\frac{1}{2} x+8
\end{aligned}
$$

(b) Data: $O A=3 \mathbf{i}-2 \mathbf{j}$ and $O B=5 \mathbf{i}-7 \mathbf{j}$.
(i) Required to Find: The unit vector $A B$. Solution:

$$
\begin{aligned}
A B & =A O+O B \\
& =-(3 \mathbf{i}-2 \mathbf{j})+5 \mathbf{i}-7 \mathbf{j} \\
& =2 \mathbf{i}-5 \mathbf{j}
\end{aligned}
$$

Any vector in the direction of $A B=\alpha(2 \mathbf{i}-5 \mathbf{j})=2 \alpha \mathbf{i}-5 \alpha \mathbf{j}$, where α is a scalar.
Since the vector is a unit vector, then its modulus is 1 .

$$
\begin{aligned}
\sqrt{(2 \alpha)^{2}+(-5 \alpha)^{2}} & =1 \\
\sqrt{4 \alpha^{2}+25 \alpha^{2}} & =1 \\
\sqrt{29 \alpha^{2}} & =1 \\
\alpha & =\frac{1}{\sqrt{29}}
\end{aligned}
$$

\therefore The unit vector in the direction of $A B=\frac{1}{\sqrt{29}}(2 \mathbf{i}-5 \mathbf{j})$ or $\frac{2}{\sqrt{29}} \mathbf{i}-\frac{5}{\sqrt{29}} \mathbf{j}$
(ii) Required to Find: The acute angle $A O B$ (to 1 decimal place).

Solution:

Let $A \hat{O} B=\theta^{\circ}$
Hence, $O A . O B=|O A||O B| \cos \theta \quad$ (Dot product law)

$$
\begin{aligned}
O A . O B & =(3 \times 5)+(-2 \times-2) \\
& =29 \\
|O A| & =\sqrt{(3)^{2}+(-2)^{2}} \\
& =\sqrt{13} \\
|O B| & =\sqrt{(5)^{2}+(-7)^{2}} \\
& =\sqrt{74}
\end{aligned}
$$

So, $29=\sqrt{13} \sqrt{74} \cos \theta$

$$
\begin{aligned}
\cos \theta & =\frac{29}{\sqrt{13} \sqrt{74}} \\
\theta & =\cos ^{-1}\left(\frac{29}{\sqrt{13} \sqrt{74}}\right) \\
\theta & =20.77^{\circ} \\
\theta & =20.8^{\circ}(\text { correct to } 1 \text { decimal place })
\end{aligned}
$$

4. (a) Data:

The diagram shows a circle, cente O and radius 4 cm . The sector AOB subtends angle $\frac{\pi}{6}$ radians at the center. Area of $\triangle A O B=\frac{1}{2} r^{2} \sin \theta$.
Required to Calculate: The area of the shaded segment.
Calculation:
Area of the shaded segment $=$ Area of sector $A O B-$ Area of triangle $A O B$

$$
\begin{aligned}
& =\left(\frac{\frac{\pi}{6}}{2 \pi}\right)\left(\pi r^{2}\right)-\frac{1}{2} r^{2} \sin \theta \\
& =\left(\frac{1}{12} \times \pi(4)^{2}\right)-\frac{1}{2}(4)^{2} \sin \left(\frac{\pi}{6}\right) \\
& =\left(\frac{4 \pi}{3}-4\right) \mathrm{cm}^{2}
\end{aligned}
$$

(b) Data: $8 \sin ^{2} \theta=5-10 \cos \theta, 0^{\circ} \leq \theta \leq 360^{\circ}$.

Required to Find: θ, correct to one decimal place.
Solution:
$8 \sin ^{2} \theta=5-10 \cos \theta$
Recall: $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\therefore \sin ^{2} \theta=1-\cos ^{2} \theta$
Substituting this expression in the original equation, we obtain,
$8\left(1-\cos ^{2} \theta\right)=5-10 \cos \theta$

$$
\begin{aligned}
& 8-8 \cos ^{2} \theta-5+10 \cos \theta=0 \\
& -8 \cos ^{2} \theta+10 \cos \theta+3=0 \\
& \times-1 \\
& 8 \cos ^{2} \theta-10 \cos \theta-3=0 \\
& (4 \cos \theta+1)(2 \cos \theta-3)=0 \\
& \therefore \cos \theta=-\frac{1}{4} \text { or } \frac{3}{2} \\
& -1 \leq \cos \theta \leq 1 \quad \forall \theta \\
& \text { Hence, } \cos \theta=\frac{3}{2} \text { has no real solutions. }
\end{aligned}
$$

Taking $\cos \theta=-\frac{1}{4}$

$$
\begin{array}{c|c}
180-A & A=\cos ^{-1}\left(\frac{1}{4}\right) \\
\hline 180+A &
\end{array}
$$

$\cos \theta=-\frac{1}{4}$ has solutions in quadrants 2 and 3.

$$
\begin{aligned}
A & =75.52^{\circ} \\
\therefore \theta & =180^{\circ}-75.52^{\circ}, 180^{\circ}+75.52 \\
& =104.48^{\circ}, 255.52^{\circ} \\
& =104.5^{\circ} \text { and } 255.5^{\circ}(\text { correct to } 1 \text { decimal place })
\end{aligned}
$$

(c) Required to Prove: $\frac{\sin \theta+\sin 2 \theta}{1+\cos \theta+\cos 2 \theta} \equiv \tan \theta$

Proof:
Recall: $\sin 2 \theta=2 \sin \theta \cos \theta$ and $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ or $2 \cos ^{2} \theta-1$ or $1-2 \sin ^{2} \theta$.
Left hand side:

$$
\begin{aligned}
\frac{\sin \theta+2 \sin \theta \cos \theta}{1+\cos \theta+2 \cos ^{2} \theta-1} & =\frac{\sin \theta(1+2 \cos \theta)}{\cos \theta(1+2 \cos \theta)} \\
& =\frac{\sin \theta}{\cos \theta} \\
& =\tan \theta
\end{aligned}
$$

L.H.S. = R.H.S.

Q.E.D.

5. (a) Required to Differentiate: $\left(2 x^{2}+3\right) \sin 5 x$ with respect to x.

Solution:

Let $y=\left(2 x^{2}+3\right) \sin 5 x$
y is of the form $y=u v$ where

$$
\begin{aligned}
& u=2 x^{2}+3 \text { and } \frac{d u}{d x}=2\left(2 x^{2-1}\right)=4 x \\
& v=\sin 5 x \text { and } \frac{d v}{d x}=5 \cos 5 x
\end{aligned}
$$

Let $t=5 x$

$$
\begin{aligned}
\therefore v & =\sin t \\
\frac{d v}{d x} & =\frac{d v}{d t} \times \frac{d t}{d x}(\text { Chain rule }) \\
& =(\cos t) \times 5 \\
& =5 \cos 5 x
\end{aligned}
$$

Recall: If $y=u v$, then $\frac{d y}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$ (Product law)
Hence, $\frac{d y}{d x}=(\sin 5 x) 4 x+\left(2 x^{2}+3\right) \times 5 \cos 5 x$

$$
=4 x \sin 5 x+5\left(2 x^{2}+3\right) \cos 5 x
$$

So, $\frac{d}{d x}\left\{\left(2 x^{2}+3\right) \sin 5 x\right\}=4 x \sin 5 x+5\left(2 x^{2}+3\right) \cos 5 x$
(b) Data: $y=x^{3}-5 x^{2}+3 x+1$
(i) Required to Find: The coordinates of all the stationary points on the curve.

Solution:

$y=x^{3}-5 x^{2}+3 x+1$
The gradient function, $\frac{d y}{d x}=3 x^{3-1}-5\left(2 x^{2-1}\right)+3$

$$
=3 x^{2}-10 x+3
$$

At a stationary point, $\frac{d y}{d x}=0$.
Let $\frac{d y}{d x}=0$

$$
\begin{aligned}
3 x^{2}-10 x+3 & =0 \\
(3 x-1)(x-3) & =0 \\
\therefore x & =\frac{1}{3} \text { and } x=3
\end{aligned}
$$

The x-coordinates of the stationary points are $\frac{1}{3}$ and 3 .

When $x=\frac{1}{3}$

$$
\begin{aligned}
y & =\left(\frac{1}{3}\right)^{3}-5\left(\frac{1}{3}\right)^{2}+3\left(\frac{1}{3}\right)+1 \\
& =\frac{1}{27}-\frac{5}{9}+2 \\
& =1 \frac{13}{27}
\end{aligned}
$$

When $x=3$

$$
\begin{aligned}
y & =(3)^{3}-5(3)^{2}+3(3)+1 \\
& =27-45+9+1 \\
& =-8
\end{aligned}
$$

\therefore The stationary points on the curve are $\left(\frac{1}{3}, 1 \frac{13}{27}\right)$ and $(3,-8)$.
The second derivative

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =3\left(2 x^{2-1}\right)-10 \\
& =6 x-10
\end{aligned}
$$

When $x=\frac{1}{3} \quad \frac{d^{2} y}{d x^{2}}=6\left(\frac{1}{3}\right)-10 \Rightarrow-$ ve $\therefore\left(\frac{1}{3}, 1 \frac{13}{27}\right)$ is a maximum point.

When $x=3$

$$
\frac{d^{2} y}{d x^{2}}=6(3)-10 \Rightarrow+\mathrm{ve}
$$

$\therefore(3,-8)$ is a minimum point.

OR

x	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$
$\frac{d y}{d x}$	+	0	-

\therefore At $x=\frac{1}{3}$, the stationary point is a maximum.

x	2.9	3	3.1
$\frac{d y}{d x}$	-	0	+

\therefore At $x=3$, the stationary point is a minimum.
(c) Data: A spherical balloon is filled with air at the rate of $200 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.

Required to Calculate: The rate at which the radius is increasing, when the radius $=10 \mathrm{~cm}$.

Calculation:

$V=\frac{4}{3} \pi r^{3} \quad(V=$ Volume of the balloon, $r=$ radius of the balloon $)$
$\frac{d V}{d t}=+200 \mathrm{~cm}^{3} \mathrm{~s}^{-1}(+\Rightarrow$ and increasing rate $)$
$\frac{d r}{d t}=\frac{d V}{d t} \times \frac{d r}{d V} \quad$ (Chain rule)

$$
\frac{d V}{d r}=\frac{4}{3} \pi\left(3 r^{2}\right)
$$

$$
=4 \pi r^{2}
$$

$$
\frac{d r}{d V}=\frac{1}{\frac{d V}{d r}}=\frac{1}{4 \pi r^{2}}
$$

When $r=10 \mathrm{~cm}$

$$
\begin{aligned}
\frac{d r}{d t} & =200 \times \frac{1}{4 \pi(10)^{2}} \\
& =\frac{1}{2 \pi} \mathrm{cms}^{-1}
\end{aligned}
$$

Note: $\frac{1}{2 \pi}=+v e \Rightarrow$ and increasing rate.
So the radius of the balloon is increasing at the rate of $\frac{1}{2 \pi} \mathrm{cms}^{-1}$.
6. (a) Required to Evaluate: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos 3 \theta d \theta$.

Solution:

$\int \cos 3 \theta d \theta$
Let $t=3 \theta \quad \frac{d t}{d \theta}=3$ and $d \theta=\frac{d t}{3}$

$$
\begin{aligned}
\therefore \int \cos 3 \theta d \theta & \equiv \int \cos t \frac{d t}{3} \\
& =\frac{\sin t}{3}+C \quad(C=\text { constant of integration }) \\
& =\frac{\sin 3 \theta}{3}+C
\end{aligned}
$$

Hence, $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos 3 \theta d \theta \equiv\left[\frac{\sin 3 \theta}{3}+C\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$
(The constant of integration, C, cancels off in a definite integral and may not be mentioned.)

$$
\begin{aligned}
& =\left(\frac{\sin 3\left(\frac{\pi}{3}\right)}{3}\right)-\left(\frac{\sin 3\left(\frac{\pi}{6}\right)}{3}\right) \\
& =\frac{1}{3} \sin (\pi)-\frac{1}{3} \sin \left(\frac{\pi}{2}\right) \\
& =\frac{1}{3}(0)-\frac{1}{3}(1) \\
& =-\frac{1}{3}
\end{aligned}
$$

(b) Data: $\frac{d y}{d x}=k x(x-1)$ for a curve ($k=$ a constant). The gradient of the curve at $(2,3)$ is 14 .
(i) Required to Calculate: k Calculation:

$$
\frac{d y}{d x}=14 \text { at } x=2
$$

$$
\begin{aligned}
\therefore 14 & =k(2)^{2}-k(2) \\
14 & =2 k \\
k & =7
\end{aligned}
$$

(ii) Required to Calculate: The equation of the curve.

Calculation:

The equation of the curve is

$$
\begin{aligned}
& y=\int\left(7 x^{2}-7 x\right) d x \\
& y=\frac{7 x^{2+1}}{2+1}-\frac{7 x^{1+1}}{1+1}+C \quad(C \text { is the constant of integration }) \\
& y=\frac{7 x^{3}}{3}-\frac{7 x^{2}}{2}+C
\end{aligned}
$$

The point $(2,3)$ lies on the curve. Therefore the equation of the curve must be 'satisfied' when $x=2$ and $y=3$.

$$
\begin{aligned}
\therefore 3 & =\frac{7(2)^{3}}{3}-\frac{7(2)^{2}}{2}+C \\
3 & =\frac{56}{3}-\frac{28}{2}+C \\
C & =3-\frac{56}{3}+\frac{28}{2} \\
C & =-\frac{5}{3}
\end{aligned}
$$

\therefore The equation of the curve is found to be $y=\frac{7 x^{3}}{3}-\frac{7 x^{2}}{2}-\frac{5}{3}$.
(c) Data: $y=x^{2}+1$

Required to Calculate: The volume of the solid generated when the region enclosed by the curve and the x-axis is rotated through 360° between $x=0$ and $x=1$.

Calculation:

A sketch of the solid generated looks like:

Volume, $V=\pi \int_{x_{2}}^{x_{1}} y^{2} d x$

$$
\begin{aligned}
& =\pi \int_{0}^{1}\left(x^{2}+1\right)^{2} d x \\
& =\pi \int_{0}^{1}\left(x^{4}+2 x^{2}+1\right) d x \\
& =\pi\left[\frac{x^{5}}{5}+\frac{2 x^{3}}{3}+x\right]_{0}^{1} \\
& =\pi\left\{\left(\frac{(1)^{5}}{5}+\frac{2(1)^{3}}{3}+1\right)-\left(\frac{(0)^{5}}{5}+\frac{2(0)^{3}}{3}+0\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\pi\left(\frac{1}{5}+\frac{2}{3}+1\right) \text { cubic units } \\
& =\frac{28 \pi}{15} \text { cubic units }
\end{aligned}
$$

7. (a) Data: The probability that a motorist stops at $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ traffic lights is 0.2 , 0.5 and 0.8 respectively.
(i) Required to Calculate: The probability that the motorist stops at only one traffic light.

Calculation:

Le us define the 'stops' as
S_{1} - the motorist stops at traffic light 1
S_{2} - the motorists stops at traffic light 2
S_{3} - the motorists stops at traffic light 3

$$
\begin{aligned}
& P\left(S_{1}\right)=0.2 \quad P\left(S_{2}\right)=0.5 \quad P\left(S_{3}\right)=0.8 \\
& \therefore P\left(S_{1}^{\prime}\right)=1-0.2 \quad P\left(S_{2}^{\prime}\right)=1-0.5 \quad P\left(S_{3}^{\prime}\right)=1-0.8 \\
& =0.8 \quad=0.5 \quad=0.2
\end{aligned}
$$

P (Motorist stops at one traffic light)
$=P\left(S_{1}\right.$ and S_{2}^{\prime} and S_{3}^{\prime} or S_{1}^{\prime} and S_{2} and S_{3}^{\prime} or S_{1}^{\prime} and S_{2}^{\prime} and $\left.S_{3}\right)$
$=(0.2 \times 0.5 \times 0.2)+(0.8 \times 0.5 \times 0.2)+(0.8 \times 0.5 \times 0.8)$
$=0.02+0.08+0.32$
$=0.42$
(ii) Required to Calculate: The probability that the motorist stops at at least two traffic lights.

Calculation:

P (Motorist stops at at least two traffic lights)
$=P\left(S_{1}\right.$ and S_{2} and $\left.S_{3}{ }^{\prime}\right)+P\left(S_{1}\right.$ and $S_{2}{ }^{\prime}$ and $\left.S_{3}\right)+P\left(S_{1}^{\prime}\right.$ and S_{2} and $\left.S_{3}\right)+$ $P\left(S_{1}\right.$ and S_{2} and $\left.S_{3}\right)$
$=(0.2 \times 0.5 \times 0.2)+(0.2 \times 0.5 \times 0.8)+(0.8 \times 0.5 \times 0.8)+(0.2 \times 0.5 \times 0.8)$
$=0.02+0.08+0.32+0.08$
$=0.5$

OR

P (Motorist stops at at least two traffic lights)
$=1-P$ (Motorist stops at exactly one traffic light or does not stop at any of the three traffic lights)

$$
\begin{aligned}
& =1-\{0.42+(0.2 \times 0.5 \times 0.8)\} \\
& =1-(0.42+0.08) \\
& =0.5
\end{aligned}
$$

(b) Data: Table of values of a measure, x, and its frequency, f.

Required to Calculate: An estimation for the mean of x.

Calculation:

\boldsymbol{x}	$5-9$	$10-14$	$15-19$	$20-24$
\boldsymbol{f}	8	4	10	3

Since the values of x is grouped, then the mean, $\bar{x}=\frac{\sum f x}{\sum f}$, where x denotes the mid-class interval.

If the data was discrete or continuous, the mid-class interval would be the same.
Let us re-configure the table.
Assume that the data is discrete.
In this case, the lower class limit = the lower class boundary and the upper class limit $=$ the upper class boundary.

Values of \boldsymbol{x}	Mid Interval Value	\boldsymbol{f}	$\boldsymbol{f} \boldsymbol{x}$
$5-9$	$\frac{5+9}{2}=7$	8	$8 \times 7=56$
$10-14$	$\frac{10+14}{2}=12$	4	$4 \times 12=48$
$15-19$	$\frac{15+19}{2}=17$	10	$10 \times 17=170$
$20-24$	$\frac{20+24}{2}=22$	3	$3 \times 22=66$
		$\sum f=25$	$\sum f x=340$

$$
\begin{aligned}
\bar{x} & =\frac{\sum f x}{\sum f} \\
& =\frac{340}{25} \\
& =13 \frac{3}{5} \text { or } 13.6
\end{aligned}
$$

(c) Data: It rains on Monday.

The probability of rain following a day of rain is 25%. The probability of rain following a day of no rain is 12%.
(i) Required to Draw: A tree diagram to illustrate the data. Solution:
$P($ Rain, following a day of rain $)=25 \%=\frac{1}{4}$
Hence, P (No rain, following a day of rain $=1-\frac{1}{4}=\frac{3}{4}$ (Law of total
probability)
$P($ Rain, following a day of no rain $)=12 \%=\frac{3}{25}$
Hence, $P($ No rain, following a day of no rain $)=1-\frac{3}{25}=\frac{22}{25}$ (Law of total probability)

Let $R_{T}=$ Rain on Tuesday
Let $R_{W}=$ Rain on Wednesday

(ii) Required to Calculate: The probability of rain on Wednesday. Calculation:

$$
\begin{aligned}
P\left(R_{W}\right) & =P\left(R_{T} \text { and } R_{W}\right)+P\left(R_{T}^{\prime} \text { and } R_{W}\right) \\
& =\left(\frac{1}{4} \times \frac{1}{4}\right)+\left(\frac{3}{4} \times \frac{3}{25}\right) \\
& =\frac{1}{16}+\frac{9}{100} \\
& =\frac{61}{400}=0.1525
\end{aligned}
$$

8. (a) Data: A particle moves in a straight line with a velocity of $3 \mathrm{~ms}^{-1}$ at $t=0 \mathrm{~s}$ and 9 ms^{-1} at $t=4 \mathrm{~s}$.
(i) Required to Draw: A velocity time graph of the motion of the particle. Solution:

Note: If the acceleration is not constant, the line joining $(0,3)$ to $(4,9)$ would not be straight. Constant acceleration is assumed in this question.
(ii) Required to Calculate: The acceleration of the particle.

Calculation:

Assuming the acceleration is constant, the gradient of the straight line 'branch' will give the acceleration for the interval from $t=0$ to $t=4$.

$$
\begin{aligned}
\text { Gradient } & =\frac{9-3}{4-0} \\
& =\frac{6}{4} \\
& =1 \frac{1}{2} \mathrm{~ms}^{-2}
\end{aligned}
$$

OR

Since the acceleration is constant, we may use the linear equation of motion $v=u+a t$, where $v=$ final velocity, $u=$ initial velocity, $a=$ acceleration and $t=$ time.
Hence,
$9=3+a(4)$
$a=\frac{9-3}{4} \mathrm{~ms}^{-2}$
$a=1 \frac{1}{2} \mathrm{~ms}^{-2}$
(iii) Required to Calculate: The increase in the displacement from $t=0$ to $t=4$.

Calculation:

The displacement, s, is obtained by calculating the area of the trapezium $=\frac{1}{2}(a+b) h$, where $h=4, a=3$ and $b=9$.
$s=$ Area of trapezium
$=\frac{1}{2}(4)(3+9)$
$=2 \times 12$
$=24 \mathrm{~m}$
(b) Data: A particle moves in a straight line so that $t \mathrm{~s}$ after passing O, its acceleration, $a \mathrm{~ms}^{-2}$, is given by $a=3 t-1$ when $t=2$, velocity, v, is $4 \mathrm{~ms}^{-1}$ and displacement, s, from O is 6 m .
(i) Required to Calculate: The velocity when $t=4$.

Calculation:

$$
v=\int a d t
$$

$$
v=\int(3 t-1) d t
$$

$v=\frac{3 t^{2}}{2}-t+C \quad$ (where C is the constant of integration)
When $t=2, v=4$ (data)

$$
\begin{aligned}
\therefore 4 & =\frac{3(2)^{2}}{2}-2+C \\
4 & =6-2+C \\
C & =0 \\
\therefore v & =\frac{3 t^{2}}{2}-t
\end{aligned}
$$

When $t=4$

$$
\begin{aligned}
v & =\frac{3(4)^{2}}{2}-4 \\
& =24-4 \\
& =20
\end{aligned}
$$

\therefore When $t=4$, the velocity is $20 \mathrm{~ms}^{-1}$.
(ii) Required to Calculate: The displacement when $t=3$.

Calculation:

$$
\begin{aligned}
& s=\int v d t \\
& s=\int\left(\frac{3 t^{2}}{2}-t\right) d t \\
& s=\frac{3 t^{3}}{3 \times 2}-\frac{t^{2}}{2}+K(K \text { is the constant of integration }) \\
& \mathrm{s}=\frac{t^{3}}{2}-\frac{t^{2}}{2}+K
\end{aligned}
$$

When $t=2, s=6$ (data)

$$
\begin{aligned}
\therefore 6 & =\frac{(2)^{3}}{2}-\frac{(2)^{2}}{2}+K \\
6 & =4-2+K \\
k & =4
\end{aligned}
$$

$$
\therefore s=\frac{t^{3}}{2}-\frac{t^{2}}{2}+4
$$

When $t=3$

$$
\begin{aligned}
s & =\frac{(3)^{3}}{2}-\frac{(3)^{2}}{2}+4 \\
& =13 \frac{1}{2}-4 \frac{1}{2}+4 \\
& =13
\end{aligned}
$$

\therefore The displacement from O when $t=3$ is 13 m .

