5: ROOTS OF A QUADRATIC EQUATION

The general form of a quadratic equation

We have grown accustomed to recognising a quadratic equation in the form $a x^{2}+b x+c=0$. In this section, we will be introduced to a new format for such a quadratic equation. This format would express the quadratic in the form of its roots. It is a convenient form to know and it allows us the flexibility to switch from this form to the standard form.

Roots of a quadratic equation (\propto and $\boldsymbol{\beta}$)

A quadratic equation in x is of the general form $a x^{2}+b x+c=0$, where a, b and c are constants.

If we divide each term by a, then the quadratic equation can be expressed in an equivalent form with the coefficient of x^{2} is equal to one as shown below.

$$
\begin{align*}
& a x^{2}+b x+c=0 \\
& x^{2}+\frac{b}{a} x+\frac{c}{a}=0 \tag{1}
\end{align*}
$$

Now consider α and β as the roots of the quadratic.
We can now rewrite the quadratic in the form:
$(x-\alpha)(x-\beta)=0$.
By expanding we get,

$$
\begin{equation*}
x^{2}-(\alpha+\beta) x+\alpha \beta=0 \tag{2}
\end{equation*}
$$

Equation (2) is an equivalent form of equation (1). In fact, any quadratic equation, in x, can always be expressed in the form of its roots.
We can replace $(\alpha+\beta)$ by the 'sum of the roots' and $\alpha \beta$ by the 'product of the roots', to obtain the following form for a quadratic equation.

$$
x^{2}-(\text { sum of roots }) x+\text { product of roots }=0
$$

Sum and product of the roots of a quadratic equation

Equations (1) and (2) above are two equivalent forms of a quadratic equation.
Equating both forms we get:

$$
x^{2}+\frac{b}{a} x+\frac{c}{a}=x^{2}-(\alpha+\beta) x+\alpha \beta
$$

When we equate coefficients, the following is obtained:

$$
\alpha+\beta=-\frac{b}{a} \quad \text { and } \quad \alpha \beta=\frac{c}{a}
$$

We can now make a general statement about the roots of a quadratic.

For the quadratic equation

$$
\begin{aligned}
& \qquad a x^{2}+b x+c=0, \\
& \text { the sum of the roots }=-\frac{b}{a} \text { and } \\
& \text { the product of the roots }=\frac{c}{a} .
\end{aligned}
$$

Example 1

If α and β are the roots of the quadratic equation $x^{2}-3 x+2=0$, determine
(i) the sum of the roots and
(ii) the product of the roots.

Solution

In the quadratic equation $x^{2}-3 x+2=0$
$a=1, b=-3$ and $c=2$.
(i) The sum of the roots, $\alpha+\beta=-\frac{b}{a}$

$$
\alpha+\beta=\frac{-(-3)}{1}=3
$$

(ii) The product of the roots, $\alpha \beta=\frac{c}{a}$

$$
\alpha \beta=\frac{2}{1}=2 .
$$

Example 2
The quadratic equation $x^{2}-4 x+3=0$ has roots α and β.
a) Obtain the equation whose roots are $\alpha+1$ and $\beta+1$.
b) Obtain the equation whose roots are α^{2} and β^{2}.

Solution

If the equation $x^{2}-4 x+3=0$ has roots α and β, then $a=1, b=-4$ and $c=3$. Hence,
$(\alpha+\beta)=4$ and $\alpha \beta=3$
To obtain an equation whose roots are $\alpha+1$ and
$\beta+1$, we can substitute these roots in the following equation:

$$
\begin{aligned}
& x^{2}-(\text { sum of roots }) x+\text { product of roots }=0 \\
& x^{2}-[(\alpha+1)+(\beta+1)] x+[(\alpha+1)(\beta+1)]=0 \\
&\left.x^{2}-[(\alpha+\beta)+2)\right] x+[\alpha \beta+(\alpha+\beta)+1]=0 \\
& x^{2}-(4+2) x+(3+4+1)=0 \\
& x^{2}-6 x+8=0
\end{aligned}
$$

This is the required equation.
Part b) To obtain an equation whose roots are α^{2} and β^{2}, we substitute these roots in:

$$
\begin{aligned}
& x^{2}-(\text { sum of roots }) x+\text { product of roots }=0 \\
& x^{2}-\left(\alpha^{2}+\beta^{2}\right) x+\left(\alpha^{2} \times \beta^{2}\right)=0 \\
& x^{2}-\left(\alpha^{2}+\beta^{2}\right) x+\left(\alpha^{2} \beta^{2}\right)=0
\end{aligned}
$$

[Recall: $\left.(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta\right]$

$$
\begin{gathered}
x^{2}-\left((\alpha+\beta)^{2}-2 \alpha \beta\right) x+(\alpha \beta)^{2}=0 \\
x^{2}-\left\{(4)^{2}-2(3)\right\} x+(3)^{2}=0 \\
x^{2}-10 x+9=0
\end{gathered}
$$

This is the required equation.

Example 3

Given that $x^{2}+(k-5) x-k=0$ has real roots
which differ by 4 , determine
i. the value of each root
ii. the value of k.

Solution

If we let α be the smaller real root, then the other will be $(\alpha+4)$.
Then the sum of the roots is : $\alpha+(\alpha+4)=2 \alpha+4$ The product of the roots is $\alpha(\alpha+4)$.

From the given equation $x^{2}+(k-5) x-k=0$,
The sum of the roots is: $-(k-5)$
The product of the roots is: $-k$
Equating coefficients, we have:

Sum of roots		Product of roots
$2 \alpha+4=-(k-5)$		$\alpha(\alpha+4)=-k$
$2 \alpha+4=-k+5$		$k=-\alpha(\alpha+4)$
$k=1-2 \alpha$	(1)	

Equating equations (1) and (2) to eliminate k, we have:

$$
\begin{gathered}
-\alpha^{2}-4 \propto=1-2 \propto \\
\alpha^{2}+2 \propto+1=0 \\
(\alpha+1)(\alpha+1)=0 \\
\propto=-1
\end{gathered}
$$

The value of k : $k=1-2 \alpha=1-2(-1)=3$
\therefore Roots are -1 and $-1+4$
The roots are -1 and 3 .

Alternative Method

If we let α be the smaller real root, then the other will be $(\alpha+4)$.
Hence the quadratic equation may be expressed as

$$
\begin{aligned}
(x-a)(x-(\alpha+4)) & =0 \\
(x-a)(x-\alpha-4) & =0 \\
x^{2}-\alpha x-a x+\alpha^{2}-4 x+4 \alpha & =0 \\
x^{2}+(-2 \alpha-4) x+\left(\alpha^{2}+4 \alpha\right) & =0
\end{aligned}
$$

Equating coefficient of x, we obtain

$$
\begin{aligned}
& -2 \alpha-4=k-5 \\
& -2 \alpha-4=k-5 \\
& k=1-2 \alpha \\
& \therefore \alpha=\frac{1-k}{2}
\end{aligned}
$$

Equating constant terms, we obtain

$$
\begin{aligned}
& \alpha^{2}+4 \alpha=-k \\
& \therefore\left(\frac{1-k}{2}\right)^{2}+4\left(\frac{1-k}{2}\right)=-k \\
& \frac{1-2 k+k^{2}}{4}+2-2 k+k=0 \\
& 1-2 k+k^{2}+8-8 k+4 k=0 \\
& k^{2}-6 k+9=0 \\
&(k-3)^{2}=0 \\
& k=3
\end{aligned}
$$

When, $k=3, \alpha=\frac{1-3}{2}=-1$
\therefore Roots are -1 and $-1+4$
The roots are -1 and 3 .

